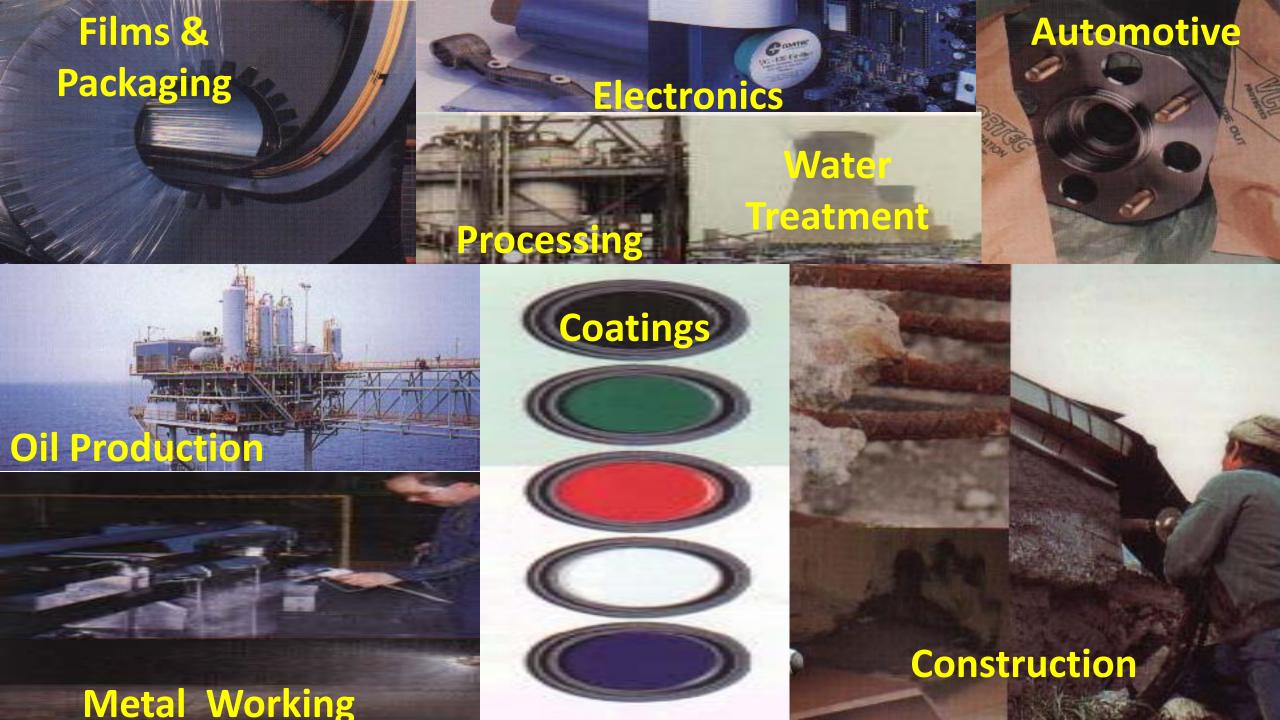
Amine Based, Migrating Inhibitors for New Construction, Restoration & Specialty Applications

Jessi Meyer

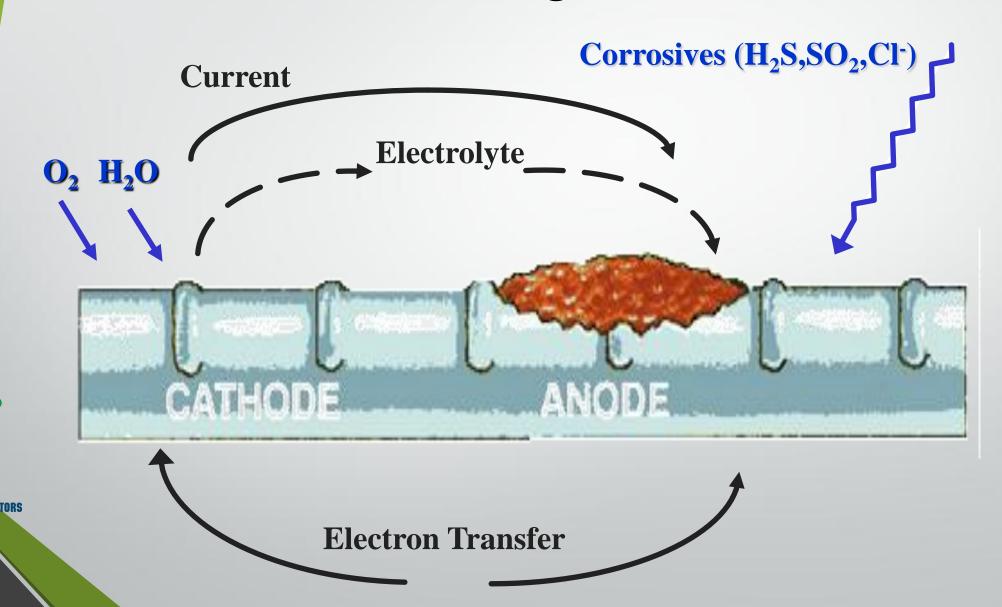
December 2018

Cortec Corporation



Overview

- Chemistry of Amine Based Corrosion Inhibitors (MCI)
- Assessment of Corrosion Protection
- Assessment of Migrating Ability
- New Construction Applications
- Repair Applications
- Specialty Applications
- Conclusions


How does corrosion occur?

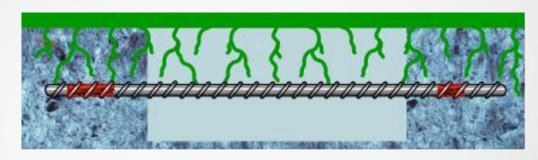
 Corrosion is the destruction of metal by chemical, electrochemical, or electrolytic reaction within its environment (American Concrete Institute).

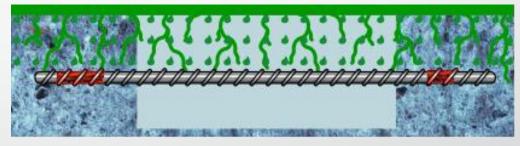
Understanding Corrosion

MIGRATING COMMINDS

Amine Based Corrosion Inhibitors (MCI)

- Amine Based
- Affect both the anodic and cathodic reactions; shift the corrosion potential in the direction determined by the predominant reaction.
- Dosages may be greatly reduced
 - Admixtures
 - 0.6-1.0 l/m³
 - o.6 kg/m³
 - Surface Treatments
 - 3.68 m²/l
 - 3.0-4.0 m²/l

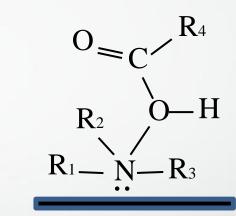

How Do MCI Inhibitors Work?

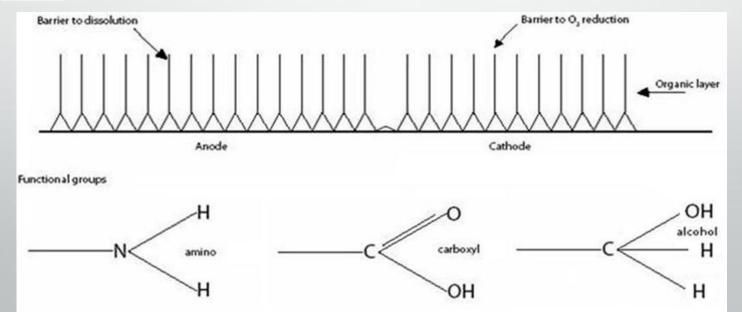

Migrate via:

- Capillary Action
- Vapor Diffusion
- Ionic Attraction

On the Rebar Surface:

- Monomolecular layer
- Establish a physical adsorption
- Nitrogen allows for a tenacious bond

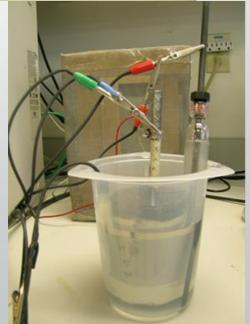



MCI Chemistry

Amine Alcohol

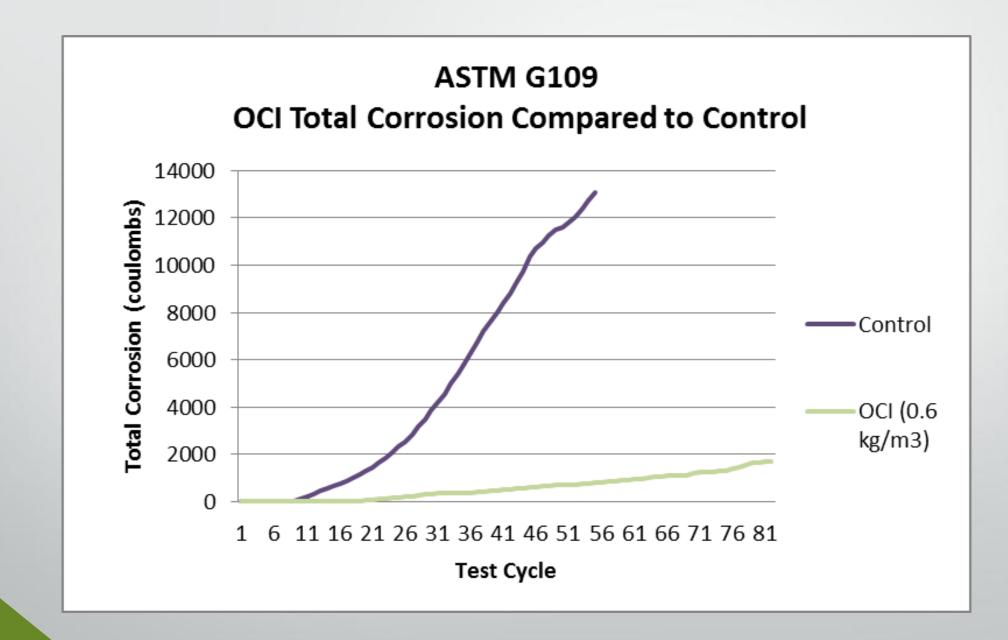
R_1 R_2 R_1 R_3

Amine Carboxylate

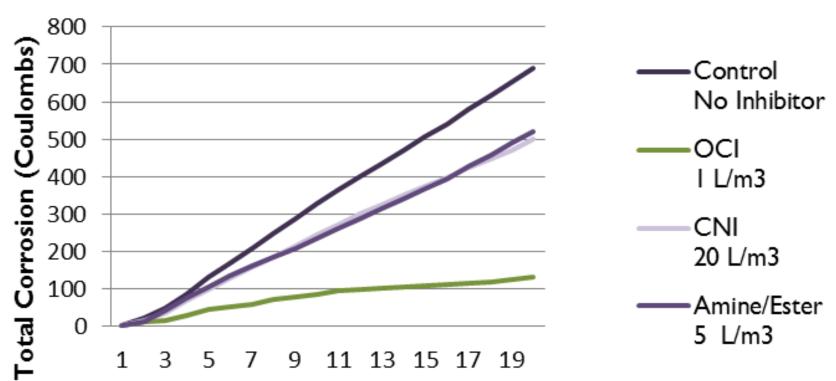


Assessment of Corrosion Protection

- ASTM C1582
 - ASTM G109
 - ASTM G180
- Modified ASTM G109
- EIS



Results for Normal Set (NS) MCI Control MCI - NS ASTM C1582 Relative to Results Requirements Control ≤ 50C when Average n/a Meets 155 29 Integrated control is Requirement Current, C 150C 0.29% \leq 1/3 of Ave. Area 8.93 2.36 Meets Corroded, control Requirement in² 2898 <u>></u> Critical Critical 2861 1.01% Meets Chloride Requirement Control Content*, ppm



^{*} Critical chloride content (based on control average at 50 Coulombs plus one standard deviation)

Cracked Beam Admixture Testing OCI Compared to Control, Other Inhibitors

Test Cycle

Vachon Bridge, Montreal, Canada

- Bridge north of Montreal, carries Hwy 13 over the Mille-Îles River
- National Research Council of Canada formed a consortium to review performance of corrosion inhibitors in bridge deck repair
- 10 year study, update given at 5 years
- Final results CNI (20 L/m³) first; Amine alcohol based MCI (0.6 L/m³) runner up

Field Testing - Canada

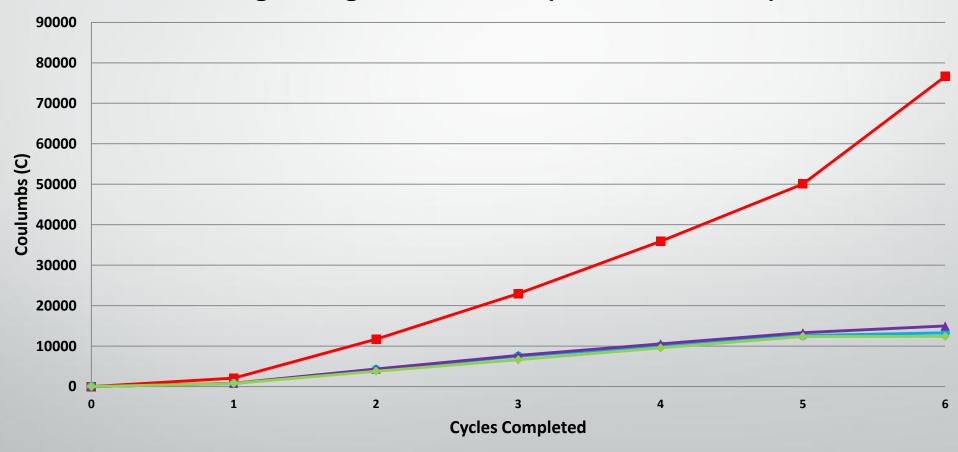
Table 2: Performance Ranking of the Corrosion Inhibiting Systems

Field Corrosion Tests \ SPANS	21*	12	Α	В	С	D	E	F	G	н	Units
Half-cell potential of reinforcement (median value, June 2001)	-415 (4)	-453 (8)	-374 (1)	-420 (5)	-405 (3)	-420 (5)	-453 (8)	-487 (10)	-380 (2)	-428 (7)	mV
Corrosion rate of reinforcement, no cracks (average value, June 2001)	0.200 (5)	0.005 (1)	0.125 (2)	0.230 (8)	0.145 (3)	0.260 (10)	0.185 (4)	0.200 (5)	0.240 (9)	0.220 (7)	μA/cm²
Corrosion rate of reinforcement, cracks (average value, June 2001)	0.260 (5)	0.195 (2)	0.200 (3)	0.375 (8)	0.270 (7)	0.410 (9)	0.230 (4)	0.180 (1)	0.500 (10)	0.263 (6)	μ A /cm²
Potential of rebar ladders, top bar (average value, June 2001)	-570 (4)	-630 (8)	-670 (10)	-620 (6)	-623 (7)	-515 (3)	-640 (9)	-600 (5)	-510 (2)	-360 (1)	mV
Potential of rebar ladders, 2nd bar (average value, June 2001)	-490 (5)	-460 (3)	-540 (8)	-520 (6)	-570 (9)	-607 (10)	-520 (6)	-480 (4)	-400 (2)	-333 (1)	mV
Corrosion rate of rebar ladders, top bar (average value, June 2001)	0.375 (5)	0.290 (3)	0.620 (7)	0.970 (9)	0.390 (6)	0.200 (2)	0.870 (8)	0.360 (4)	2.100 (10)	0.135 (1)	μA/cm²
Corrosion rate of rebar ladders, 2nd bar (average value, June 2001)	0.250 (8)	0.200 (6)	0.400 (10)	0.120 (3)	0.100 (1)	0.240 (7)	0.163 (5)	0.110 (2)	0.270 (9)	0.130 (4)	μ A /cm²
Chloride content at 25-50 mm (average value, June 2001)	0.32 (10)	0.19 (4)	0.20 (6)	0.22 (7)	0.15 (2)	0.195 (5)	0.12 (1)	0.23 (8)	0.26 (9)	0.15 (3)	%
Chloride content at 50-75 mm (average value, June 2001)		0.03 (5)	0.04 (8)	0.03 (6)	0.03 (3)	0.037 (7)	0.02 (2)	0.02 (1)	0.05 (9)	0.03	%
OVERALL RANKING:	5.8	4.4	6.1	6.4	4.6	6.4	5.2	4.4	6.9	3.7	

Assessment of Corrosion Protection

Average Chloride Values (ppm)

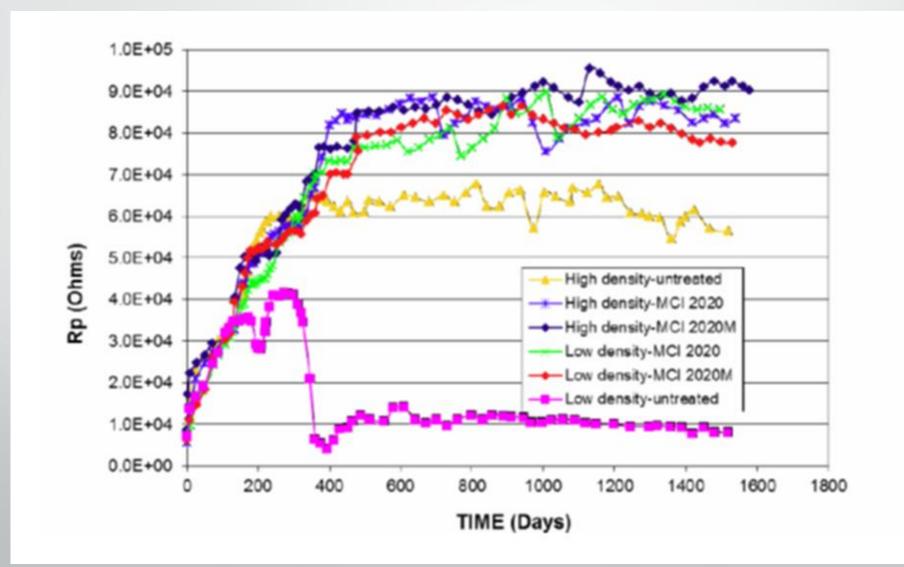
	Control		Treat	ment A	Treatr	nent B	Treatment C	
	Repair	End	Repair	End	Repair	End	Repair	End
Average	2604	3520	2378	2620	2706	2600	2744	2540
SD	181	264	268	223	399	190	147	171
Sp	242							
95% CL	230							
90% CL	190							


Crack Length & Area by Treatment

	Length (mm)		Area (mm2)	
	Repair	End	Repair	End
Control	2315	311	284	78.55
Treatment A	915	820	106.06	101.24
Treatment B	689	341	75.10	44.496
Treatment C	465	527	51.92	61.63
Sp	539		74	
95% CL	511		71	

Results of MCI Treatments

Average Integrated Current (After Treatment)

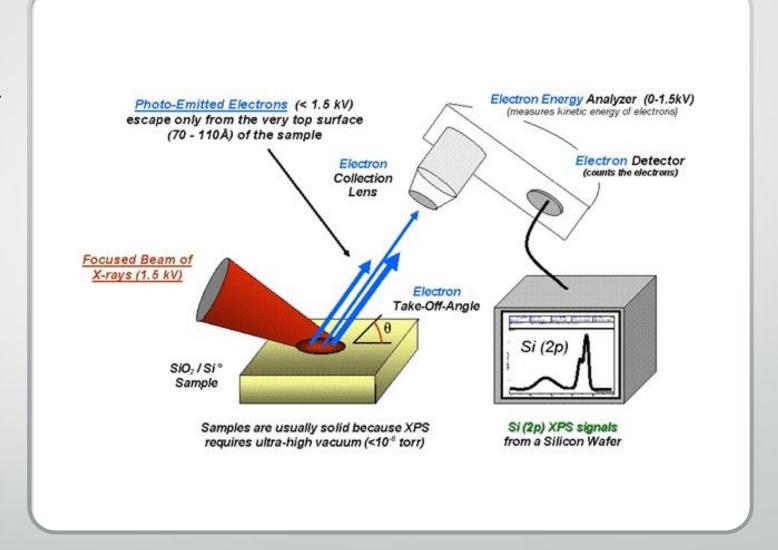

Modified G109 – Topical MCI

- 1500 day test
- 200 cycles wet/dry; 3.5% NaCl solution
- Low & High density concrete
- XPS/SEM confirmed migration of MCI in ≤150 days
- MCI samples showed no signs of corrosion while control samples did

Polarization Resistance (Rp) Low & High Density Concrete - MCI vs. Untreated

XPS Analysis, MCI & Untreated

Peak	Atomic Conc. (%)	Mass Conc. (%)	Atomic Conc. (%)	Mass Conc. (%)
	Untreated	Untreated	MCI	MCI
Fe 2p	0.87	3.32	0.08	0.3
O 1s	30.19	33.06	31.4	35.91
C 1s	62.48	51.37	59.43	48.12
Si 2p	4.72	9.08	1.26	4.14
Cl 2p	0.84	2.04	1.11	2.81
N 15	0.74	0.71	5.64	5.71



Assessment of Migrating Ability

- XPS/SEM Testing
- UV Mass Spec
- DART

YTORS

MIGRATING C

New Construction Applications

Advantages of MCI Admixtures

- Added to mix water at RM plant or dosed onsite and mixed prior to placing
- MUCH lower dosage rate than other types of inhibitors
- Protection directly to embedded metals
- Works even in cracked areas
- Tested to meet ASTM C1582 (C494, G109, G180)
- Does not affect finish properties when used with silica fume, fly ash, slag, etc.
- Can be used in conjunction with cathodic protection
- Certified to meet ANSI/NSF Standard 61 (Potable Water)

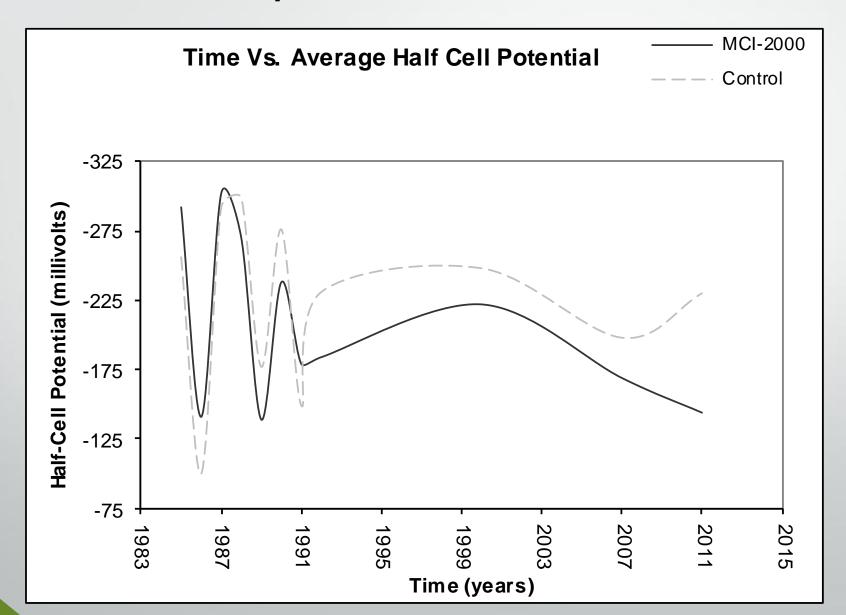
Randolph Avenue Bridge

Gecor 6 Measurements

Half-Cell Potential Readings

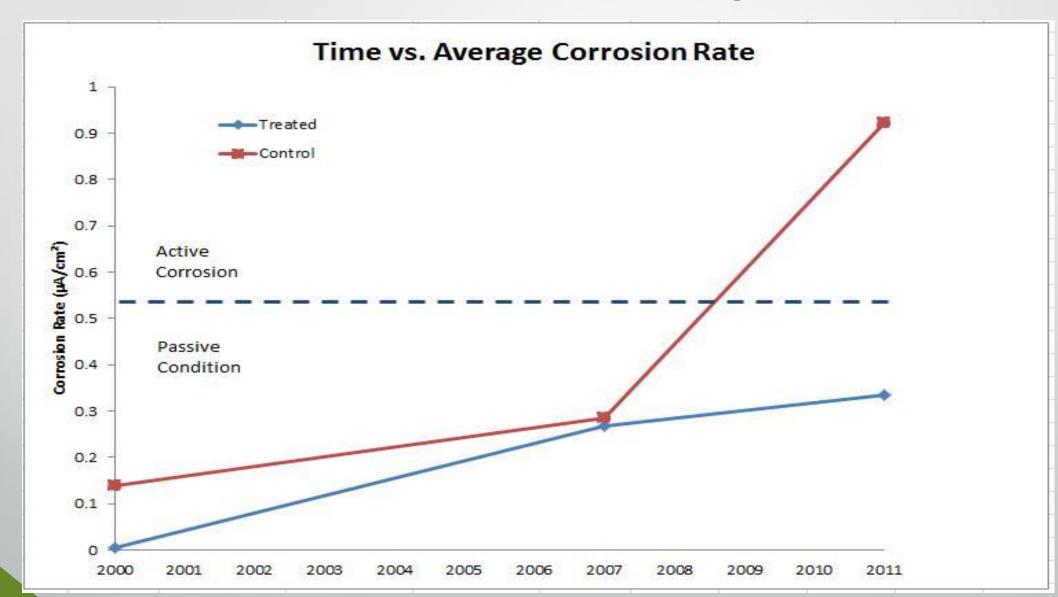
Randolph Ave – LSDC Mix Design

Component	Control (kg/m ₃) –	Treated (kg/m ₃) –
	Eastbound Lanes	Westbound Lanes
Type I Cement	496	496
Water	160	160
W/C Ratio	0.32	0.32
Coarse Aggregate	821.69	821.69
Fine Aggregate	815.16	815.16
Water-Reducing Admixture	0.148	0.148
Air-Entraining Agent	0.043	0.043
Amine Based Corrosion Inhibitor (MCI)		0.564



Average Chloride Levels

Year	Treated (kg/cubic meter)			Control (kg/cubic meter)		
	0-2.54 cm	2.54-5.08 cm	5.08-7.62 cm	0-2.54 cm	2.54-5.08 cm	5.08-7.62 cm
1991	2.08	0	0.415	4.57	1.48	1.13
1992	3.86	0.65	1.13	5.64	2.08	1.48
2000	6.94	0.95	0.77	10.2	3.67	1.42
2007	6.94	0.59	1.54	11.87	4.39	1.36
2011	7.30	2.91	1.07	8.72	3.92	2.08



Randolph Half-Cell Potential

Corrosion Rate Readings

Princess Tower, Dubai, UAE

- 101 Story, 413.4 m tall
- 107 Floors (6 basement, ground floor, 100 above)
- 763 Residential Units (1, 2, 3 Bedroom), 8 Retail Shops, 957 Parking Spaces
- Chloride levels in ground water in this area up to 90,000 mg/L
- 100+ year design life

Cost Analysis, Princess Tower

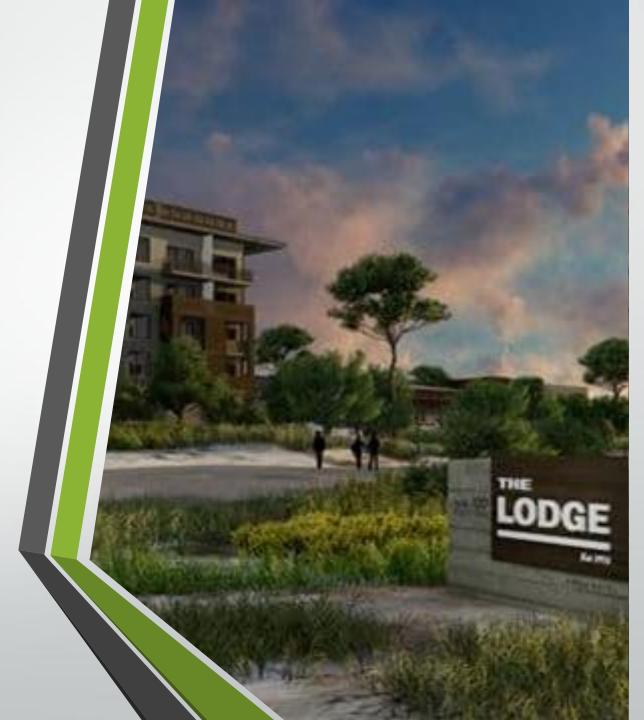
ITEM	COST (USD)
Construction Cost	188,000,000
Additional Cost of MCI (Substructure)	136,000 (0.07%)
LIFE-365 Service Life (Without MCI)	48 Years
LIFE-365 Service Life (With MCI)	103 Years

Princess Tower ROI Estimates (USD)

Year	1	10	48	100
Revenue	\$28,066,757	\$33,542,373	\$71,186,938	\$199,346,790
Building Management	\$2 , 079 , 022	\$2,712,653	\$8,340,820	\$38,792,200
Licensing & Insurance	\$3,754,768	\$4,106,535	\$5,993,600	\$10,055,396
Others	\$3,754,768	\$4,106,535	\$5,993,600	\$10,055,396
Total Cost	\$9,588,559	\$10,925,722	\$20,328,019	\$58,902,991
Net Profit	\$18,478,198	\$22,616,651	\$50,858,920	\$140,443,799
Return on Investment	9.8%	12.0%	27.1%	74.8%
Present Value @ 3% discount rate	\$18,478,198	\$16,828,912	\$12,307,798	\$7,307,690
ROI	\$18,478,198	\$174,387,898	\$724,175,783	\$1,224,731,446

CASE STUDY: Gulf State Hotel – Gulf Shores, AL

Life 365 Analysis


Base concrete 11.6 years Epoxy Coated Rebar - 25.6 years MCI - 40.7 years

LEED Credit and Water Safety

MCI qualified with over 67% bio-content MCI was mfg. within 500 miles (Sarasota, Florida) NSF61 Certified – Safe to be used with potable water

Project Costs & Efficiency

Significant cost savings (over six figures)
Decelerates set time by 1.5 hours at 70 degrees
Total Cubic Yards = 7,500
937.5 gal MCI vs. 30,000 gal of Calcium Nitrite

Wind Turbines – Penescal Wind Farms, TX

Repair Applications

The Pentagon

- Corrosion due to carbonation and rebar close to the surface.
- Started 4/2003, completion 2012
 - Silicate and Silane Coatings applied over MCI for additional protection and longevity of repair.
- GalvaPulse Readings every 6 months

GalvaPulse

Corrosion Current, µA/cm2	Corrosion Rate, µm/year	Corrosion Level	Time to Visible Deterioration
< 0.5	< 5.8	Passive	N/A
0.5 to 5	5.8 to 58	Low	> 10 years
5 to 15	58 to 174	Moderate	3 to 10 years
> 15	>174	High	< 2 years

Corrosion rates by Thomas Frolund, 2002 (with GalvaPulse instrument)

Chart from GalvaPulse Manual

GalvaPulse Readings

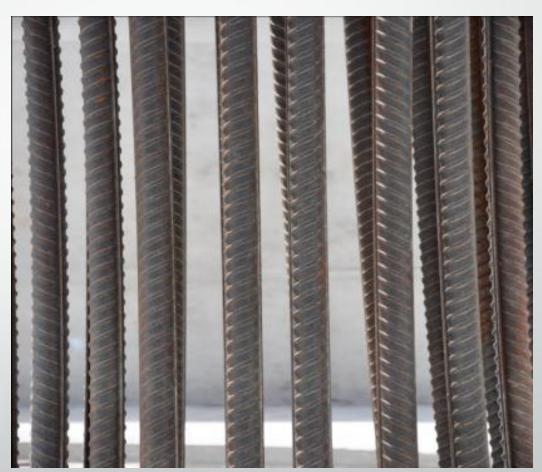
Temperature ~ 77F (Point ~ 74F (23C)	2pm to 3:30pm (26C) Dew Barometric inHg (1023 hPa)	Sept. 27, 2005, 1pm to 2pm Temperature ~ 75F (24C) Dew Point ~ 50F(10C) Barometric Pressure~ 30inHg (1015 hPa)	
Corrosion Current, µA/cm ²	Corrosion Rate, µm/year	Corrosion Current, µA/cm²	Corrosion Rate, µm/year
10.9000	126.44	0.0957	1.11
2.8133	32.63	0.0808	0.94
0.1552	1.80	0.0927	1.08
0.9165	10.63	0.1130	1.31
0.6977	8.09		
3.10	35.92	0.10	1.11
June Average:	32.41	September Average:	1.11

C.A.T. – Consorci D'Aigües, Tarragona, Spain

- Drinking water authority
- 30 yr. old network of pipes
- Carbonation and corrosion problems
- 7,000 m² repair, 13,000 m² treated with MCI

Francis Scott Key Bridge, USA

REY TO


- 46,452 m² treated with 100% organofunctional silane + MCI
- Completed Spring 2008

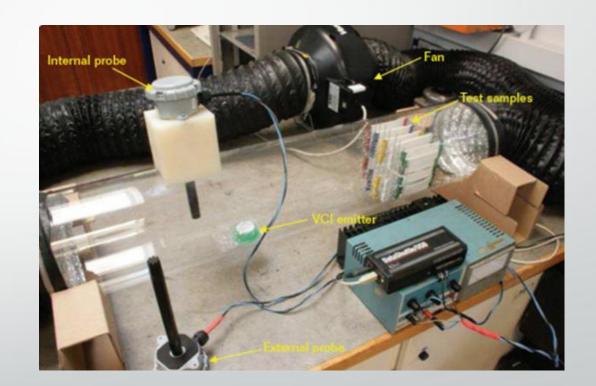
Specialty Applications

Preservation of Exposed Reinforcing Steel

Corrosion on Strands Cochrane Bridge

02/05/03 15:57:56

Severn Bridge, UK


- 988 m span bridge, carries
 M48 over Severn River
- UK Highway Agency
- Dehumidification System
 - Reduce moisture
 - Prevent corrosion
 - MCI used for protection during initial period of moisture reduction and as back up in event dehumidification system down

Severn Bridge, UK

- Testing to confirm
 - MCI did not affect system components
 - MCI would reach all areas needing protection
 - Presence of MCI in the field
- Consultant developed monitoring criteria and systems for future management to comply with BD79/13 Standard
 - Acoustic emissions (strand breakage) decreased from 0.4% to less than 0.04%

Conclusions

- MCI have been used in industry more than 30 years
- Effectiveness of MCI demonstrated in both lab and field testing
- MCI can effectively increase expected service life
- Use of MCI not limited to new construction or repair, but also useful in specialty applications

Thank You! Obrigado!

ACI 212.3R-16 Report on Chemical Admixtures for Concrete

Chapter 13 – Corrosion Inhibiting Admixtures

Report on Chemical Admixtures for Concrete

Reported by ACI Committee 212

Licensed to: Jessica Me

ICRI Corrosion Committee 510

Guideline for Use of Penetrating Surface Applied Corrosion Inhibitors for Corrosion Mitigation of Reinforced Concrete Structures

Guideline No. 510.2-2016

