

Carga de Longa Duração nas Estruturas de Concreto ou Efeito Rüsch

Paulo Helene

Instituto de Engenharia

11 de Setembro de 2014

Normalização Brasileira

ABNT NBR 6118:2014 ABNT NBR 6120:1980 ABNT NR 6122:2010 ABNT NBR 6123:1988 ABNT NBR 7188:1984

pedestre;

ABNT NBR 8681:2004 - Ações e segurança nas estruturas - Procedimento ABNT NBR 9062:2006 - Projeto e execução de estruturas de concreto pré-

moldado: ABNT NBR 15200:2012 - Projeto de estruturas de concreto em situação de

incêndio; ABNT NBR 15421:2006 - Projeto de estruturas resistentes a sismos -

Procedimento;

ABNT NBR 15575:2013 - Edificações habitacionais - Desempenho;

Normalização Internacional

ACI-318-11 - Building Code Requirements for Structural Concrete and Commentary;

EN 1991 EUROCODE 1 – Actions on structures:

Part 1-3: General actions – Snow loads;
Part 1-4: General actions – Wind actions;
Part 1-5: General actions – Thermal actions;
Part 1-6: General actions – Actions during execution

EN 1992 EUROCODE 2 - Design of concrete structures:

fib Model Code for Concrete Structures 2010; $\pmb{Bulletinfib\ n.^o\ 63}$ – Design of precast concrete structures against accidental loads

 $\textbf{\textit{Bulletinfib}} \ \textbf{\textit{n.}}^{o} \ \textbf{\textit{61}} - \text{Design examples for strut-and-tie models};$

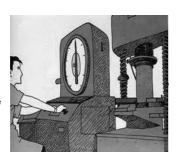
Bulletin CEB n.º 223 - Ultimate limit state design models;

ISO 22111:2007 - Basis for Design of Structures. General Requirem

Carga mantida → como comprovar ?

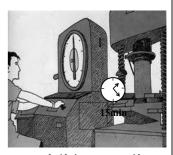
Concreto de uma betonada: ABNT NBR 12655:2006 (em Revisão!) ABNT NBR 5738:2003 Emenda1:2008

Moldagem de corpos-de-prova cilíndricos irmãos caprichados



Carga mantida → como comprovar ?

1 ou 2 CP levados à ruptura (ABNT NBR 5739:2007)


Por exemplo → carga de ruptura:

 $f_c = 30 \text{ tf}$

Carga mantida → como comprovar ?

Sobre o CP irmão restante aplicar uma carga 10% menos, no caso, 27tf, mantendo o carreaamento de 27tf A partir dos 10minutos e antes dos 15minutos o CP irá romper com a carga 10% menor

Fluência e relaxação do concreto ocorrem devido às cargas mantidas, e devem ser consideradas no método de introdução da segurança no $\,$ projeto estrutural.

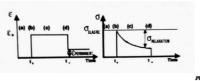
Resumindo...

 Comparativo dos coeficientes parciais no Brasil e no exterior

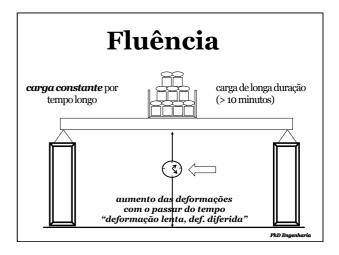
	ABNT NBR 6118:2014	ACI 318- 11	CEB- fib Model Code 2010
Considera (Rüsch) 0,85 no dimensionamento	sim	sim	sim
Coeficientes de minoração da resistência potencial do concreto	1,4	1,1 à 1,5	1,35 à 1,50
Coeficientes de minoração da resistência potencial do concreto 1/γc	0,71	0,65 a 0,90	0,65 a 0,74

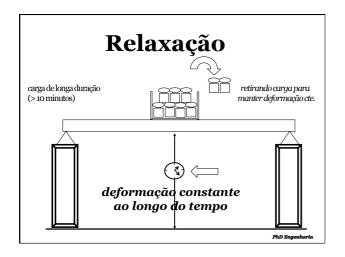
PhD Engenharia

Relaxação ≈ Carga mantida


conceito de relaxação "strength relaxation" →para concreto

"relaxação de <u>resistência</u>"


PhD Engenharia


Relaxação ≈ Carga mantida

- <u>movimento da água</u> <u>na microestrutura</u> que resiste aos esforços.
- É a redução da tensão no concreto quando este é submetido à deformação constante.
- Com o tempo, é necessária uma carga menor para causar a mesma deformação.

hD Engenha

Métodos de ensaio para fluência e relaxação do concreto

Standard solid model - Mehta e Monteiro (2014)

- os autores ressaltam a relação entre os fenômenos de fluência e relaxação com um decréscimo do módulo de elasticidade do concreto sob carga mantida ao longo do tempo.
- Os ensaios devem ser realizados fixando a tensão ou a deformação.
 Deve-se ainda expandir a discussão para taxas de variação instantânea, lenta ou média das tensões e deformações.
- · para o caso específico da relaxação temos:

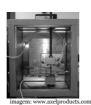
$$\sigma(t) = \varepsilon_0 * [E_{\infty} + (E_1 - E_{\infty}) * e^{-(E_1 + E_2)*t/\eta}]$$

PhD Engenharie

Métodos de ensaio para fluência e relaxação do concreto

Fluência do concreto sob compressão (ASTM C 512):

- CPs são carregados aos 28 dias com carga constante até 40% da resistência estimada esta idade, ali permanecendo por um ano;
- o carregamento pode ser mantido por sistemas hidráulicos ou com molas, que devem ser periodicamente ajustadas;
- como correção, são subtraídas as deformações neste período entre CPs carregados e não carregados do mesmo concreto;



PhD Engenharia

Métodos de ensaio para fluência e relaxação do concreto

Relaxação do concreto sob tração:

- relaxação uniaxial por aplicação de carga permanente [1]
- Aplicação de carga ou deformação constante em cps com aparelhagem elétrica/hidráulica específicas para este fim^[2]

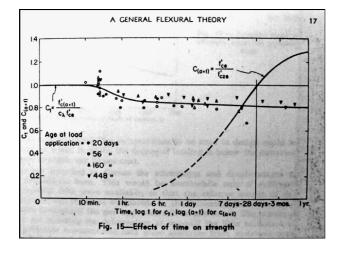
[1] Umehara et al. (1994); Bizonette e Pigeon (1995)

[2] Weiss (1999); Ross (1954)

PhD Engenharia

From the work of Comité Européen du Béton

Researches Toward a General Flexural Theory for Structural Concrete


By HUBERT RÜSCH

This paper is distincted beautif formulation of a general flurarial beautif model and could have all linguistrate fluraria specific the properties of contracts. The fast that strength and administrate of contracts deposition of the contract deposition of the contr

B. REARMEN IN THE PERCENTAGE, CONCERT PRIES IN Flood body with problems of tunnised challenge, We find exercives in a period of drang characterised by the abandoment of the elastic theory, and by a conversion from allowable stresses as a basis of the period of the

RÜSCH, Hubert.

Researches Toward a
General Flexural
Theory for Structural
Concrete. ACI Journal:
Proceedings. [s.1.] Julho,
1960. 28p. (download e
consulta free na biblioteca
da PhD)

Hubert Rüsch, 1960

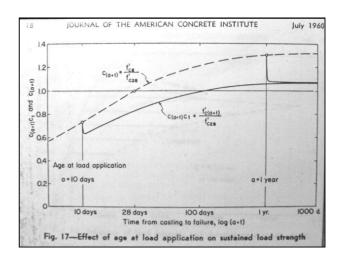
1ª constatação:

 $\rightarrow relaxação"$ qq $\rightarrow f_{ck}$

2ª constatação:

 $\rightarrow relaxação" =, qq \rightarrow t_o$

Hubert Rüsch, 1960

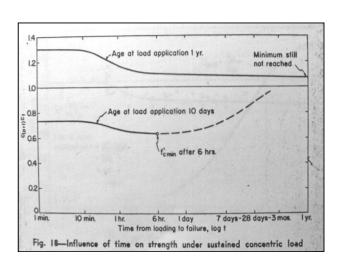

3ª constatação:

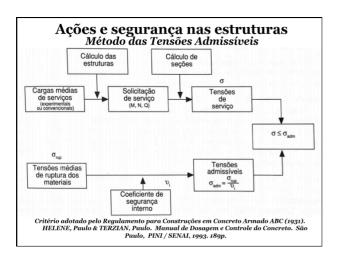
$$\rightarrow$$
 "relaxação" máx. = 0,75* f_{c,t_0}

4ª constatação:

 \rightarrow "relaxação" =, qq $\rightarrow f_{c,t_0}$

PhD Engenhar




Hubert Rüsch, 1960

5ª constatação:

ightarrow r do concreto depende da data de f_{ck} , da data f e do crescimento de f a partir de f_{ck}

hD Engenha

Cimento armado NB-1 1931

Resistência dos concretos – solicitações limites

		Dosagem arbitrári	ia	
Consumo de	Cimente	o normal	Super-cimento	
cimento (kg/m³)	Pilares com cargas axiais (kg/cm²)	Em geral	Pilares com cargas axiais	Em geral
300	40	45	50	55
350	45	50	55	60
400	50	55	60	65

Nos casos de variação de temperatura, contração, ventos, esforços dinâmicos, frenagem, empuxos, etc. e vigas em T nas zonas de momentos negativos, as solicitações poderão ser majoradas de 20%.

Cimento armado NB-1 1931

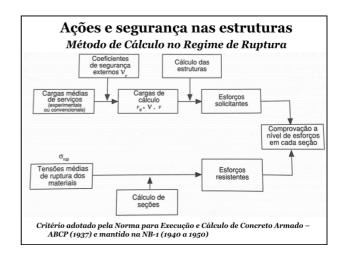
 Resistência dos concretos – solicitações limites

Dosagem racional					
Pilares com cargas axiais Em geral					
cubo	cilindro	prisma	cubo	cilindro	prisma
$\sigma_c = R_{c28}/4 \le 60 \text{kg/cm}^2$	$\sigma_c = R_{c28}^1/3, 6 \le 60 \text{kg/cm}^2$	$\sigma_c = R^{II}_{c28}/6, 8 \le 60 \text{kg/cm}^2$	$\sigma_c = R_{c28}/3 \le 65 \text{kg/cm}^2$	$\sigma_c = R_{c28}^1/2,7 \le 65 \text{kg/cm}^2$	$\sigma_c = R^{11}_{c28}/5,1$ $\leq 65 \text{kg/cm}^2$

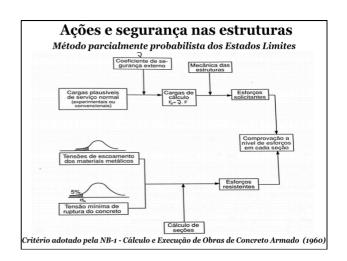
 $R_{\rm c28}$ = resistência limite de ruptura após 28
dias.

Nos casos de variação de temperatura, contração, ventos, esforços dinâmicos, frenagem, empuxos, etc. e vigas em T nas zonas de momentos negativos, as solicitações poderão ser majoradas de 20%.

Cimento armado NB-1 1931


$$\sigma_c = R_{c28}^{I}/2, 7 \le 65 \text{kgf/cm}^2$$

$$\sigma_{cd} = \sigma_c = 6,5 \text{MPa}$$

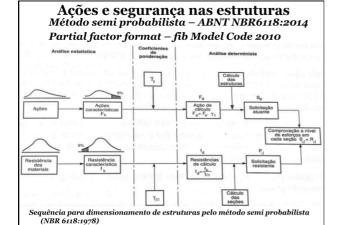

$$f_{cm28} = R_{c28}^{I} \le 18 \text{MPa}$$

Cimento armado NB-1 1931

$$f_{cm28} = 18MPa$$

 $f_{ck} = 11,4MPa$
 $f_{cd} = 8,1 MPa$
 $\sigma_{cd} = 6,9MPa$

ABNT NB1:1940 Compressão axial ou flexão $\leq 40~kg/cm^2$ Flexão simples ou composta ≤ 45 kg/cm² Concreto Resistência mínima de Cisalhamento ≤ 14 kg/cm² Compressão axial ou flexão 125kg/cm² aos 28dias \leq 60 kg/cm² Dosagem racional Flexão simples ou composta $\leq 75 \text{ kg/cm}^2$ Cisalhamento ($\sigma_{c \ 28} \ge 150 kg/cm^2$) 37 CA ≤ 1200 kg/cm² Compressão axial ou flexão composta 50 CA ≤ 1500 kg/cm² 37 CA $\leq 1500 \; kg/cm^2$ Aço Flexão simples ou composta $\leq 1800 \ kg/cm^2$


ABNT NB1:1960

Coeficientes de segurança		
Flexão simples ou composta	Cargas permanentes e para cargas acidentais definidas na NB-5, retração e temperatura	1,65
	Demais cargas acidentais	2
Compressão axial e tração axial*	Cargas permanentes e para cargas acidentais definidas na NB-5, retração e temperatura	2
	Demais cargas acidentais	2,4
Proteção adicional contra a ação de álcalis, ácidos, águas agressivas, etc.		
*Pilares com seções compostas de retângulos e largura < 20cm		

ABNT NB1:1960

Solicitação	Material	Tensões admissíveis		Tensões admissíveis	
	Concreto	$\sigma_c = \sigma_R/2 \le 110 \text{kg/cm}$	2 → 90kg/cm ² < σ_R < 150kg/cm ²		
Flexão simples ou		aço 37-CA	$\sigma_f = 1500 \text{kg/cm}^2$		
composta*	mposta* Aço	aço 50-CA	$\sigma_f = 1800 \text{kg/cm}^2$		
		aço CA-T 40	$\sigma_f = 2400 \text{kg/cm}^2$		
		aço CA-T 50	$\sigma_f = 3000 \text{kg/cm}^2$		
Estados múltiplos	ltiplos	Armadura calculada para resistir a todos os esforços de tração	$\sigma_{I} \leq \begin{bmatrix} \sigma_{R}/7, 5 \\ 25 \text{kg/cm}^{2} \end{bmatrix} \sigma_{II} \leq \sigma_{R}/2, 5 - 2\sigma_{I}$		
de tensões	Aço	Armadura insuficiente para resistir a todos os esforços de tração	$\sigma_{I} \leq \begin{bmatrix} \sigma_{R}/25 \\ 8 \text{kg/cm}^{2} \end{bmatrix} \sigma_{II} \leq \sigma_{R}/2, 5 - 5\sigma_{I}$		
		Barras lisas	$\sigma_R/25 \le 8kg/cm^2$		
		Barras lisas torcidas	$\sigma_R/20 \le 10 \text{kg/cm}^2$		
Aderência	Concreto/aço	Barras com mossas ou saliências, torcidas ou não	$\sigma_R/16 \leq 12 kg/cm^2$		

* Proteção adicional contra a ação de álcalis, ácidos, águas agressivas, etc. /1,2

Ações e segurança nas estruturas

ABNT NBR 8681:2004

Ações majoradas:

$$F_d = F_k * \gamma_f$$

Resistências minoradas:

$$f_d = \frac{f_k}{\gamma_m}$$

PhD Engenharia

Ações e segurança nas estruturas ABNT NBR 8681:2004

Coeficientes de ponderação das ações para ELU (coef. segurança) $\gamma_{\rm f}$

$$\gamma_f = \gamma_{f1} * \gamma_{f2} * \gamma_{f3}$$

→γ_{fi} → considera variabilidade das ações;

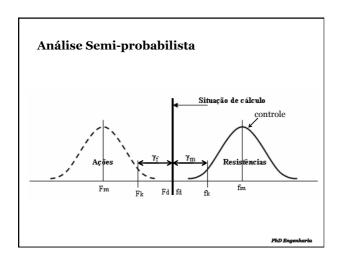
 $\rightarrow \gamma_{f_2} \rightarrow$ coef. de combinação (ψ_o - simultaneidade);

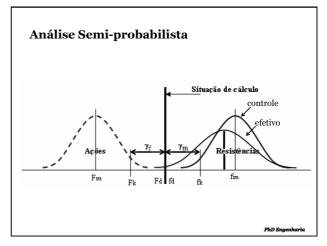
→ $\gamma_{/3}$ → considera possíveis erros de avaliação dos efeitos das ações devido ao método construtivo ou modelo de cálculo

PhD Engenharia

Ações e segurança nas estruturas ABNT NBR 8681:2004

Coeficiente de ponderação das resistências


$$\gamma_m \gamma_c \& \gamma_s$$


$$\gamma_{\rm c} = \gamma_{\rm c1} * \gamma_{\rm c2} * \gamma_{\rm c3}$$

 $\gamma_{cr} \xrightarrow{\hspace*{-0.1cm} \rightarrow}$ considera variabilidade da resistência efetiva na estrutura

 $\gamma_{\rm c2}$ \Rightarrow considera as diferenças entre a resistência efetiva do concreto na estrutura e a resistência potencial do CP.

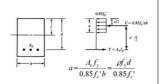
 $\gamma_{\rm cg}$ \to considera as incertezas na determinação das solicitações resistentes, devido ao método construtivo ou método de cálculo empregado

Ações e Segurança

NBR 6118:2014

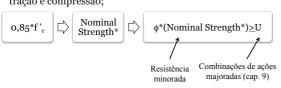
$$f_{cd} = \frac{f_{ck}}{\gamma_c} \qquad \gamma_c = 1,4$$

$$\sigma_{cd} = \frac{f_{ck}}{\gamma_c} * \beta = \frac{f_{ck}}{\gamma_c} * 0,85$$


PhD Engen

Como é considerado o efeito de cargas de longa duração em normas internacionais?

PhD Engenharia


ACI 318-11

· Atualmente em revisão

Item 10.2.7.1

- Considera ${\it o,85^*f'_c}$ no processo de cálculo à flexão, tração e compressão;

ACI 318-11

 Coeficiente de minoração das resistências: φ (depende da natureza da solicitação)

Tração predominante	0,90	1/1,1
Compressão com estribos em espiral	0,75	1/1,3
Compressão	0,65	1/1,5
Cisalhamento e torção	0,75	1/1,3
Sistema biela-tirante	0,75	1/1,3
Zonas de ancoragem pós tracionadas	0,85	1/1,2

fib Model Code 2010

- Muito semelhante ao método preconizado pela Norma Brasileira
- Flexão e cargas axiais: $\gamma_c = 1,35$ a 1,50

Item 5.1.9.2 (strength under sustained loads)

· Compressão no concreto:

$$f_{cm,sus}(t,t_0) = f_{cm} * \beta_{cc}(t) * \beta_{c,sus}(t,t_0)$$

PhD Engenharia

NBR 6118:2014; NBR 8681:2004

 $0.85? \approx \beta_{cc,t} * \beta_{c,sus,t}$ 0.85 = 1.16 * 0.73

 $B_{cc,t}$ = 1,16 \rightarrow crescimento f_{ck} após t_o até $t_{infinito}$ (50 anos)

 $B_{c,sus,t} = \textbf{0,73} \rightarrow ext{decréscimo de} f_{ck}$ devido às cargas de longa duração, aplicadas na idade $ext{t}_{o}$ até $ext{t}_{infinito}$ (50 anos) $ext{t}_{o}$ = idade de aplicação da carga de longa duração

(cargas permanentes + parte das acidentais)

....

Como cresce e como decresce a resistência com o tempo ?

PhD Engenha

3333333333

Como **cresce** a resistência com o tempo?

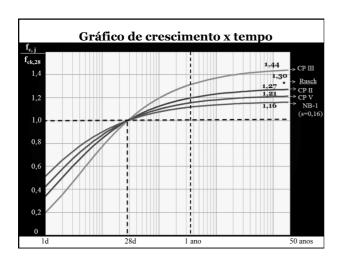
PhD Engenharia

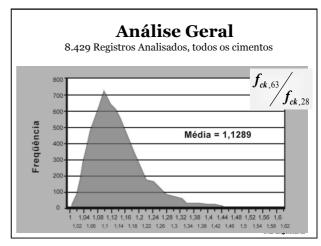
Crescimento da Resistência

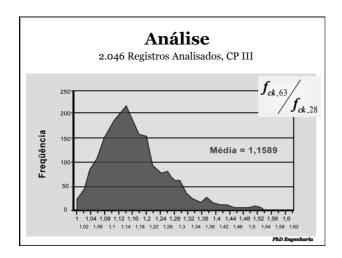
fib Model Code 2010

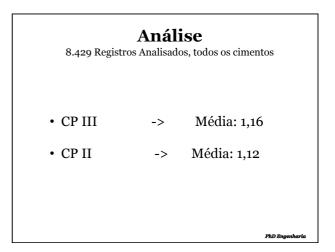
$$\beta_{cc,t} = \frac{f_{cm,t}}{f_{cm,28}} = e^{s*(1-\sqrt{\frac{28}{t}})}$$

CPV ARI	\rightarrow s	= 0,20	\rightarrow	1,21 (50anos)
CP I / II	\rightarrow s	= 0,25	→	1,27 (50anos)
CP III / IV	\rightarrow s	= 0,38	→	1,44 (50anos)


hD Engenharia


$\beta_{cc,t} = crescimento f_{ck} após t_{o}$ (em 50 anos)


$$\beta_{cc,t} = \frac{f_{cm,t_{\infty}}}{f_{cm,t}}$$


		<i>t</i> ₀ =28d
Rüsch (1960)		1,30
	• POZ & AF	1,44
<i>fib</i> (2010)	· normal	1,27
	•ARI + CAR	1,21
NBR 6118:2014		1,16
		PLD Proceed

PhD Engenha

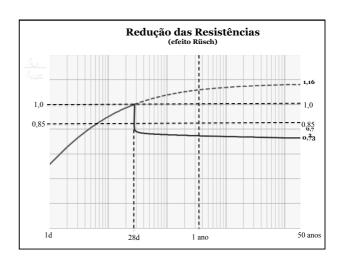
??????????
Como decresce a
resistência com
o tempo ?

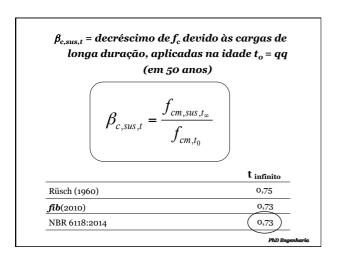
Redução das Resistências (efeito Rüsch)
fib Model Code 2010
$$\beta_{c,SUS,t} = \frac{f_{cm,SUS,t}}{f_{cm,t_0}}$$

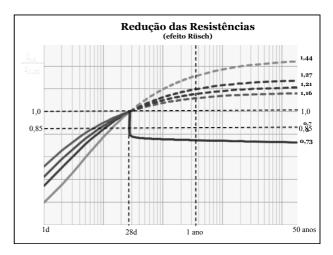
$$\frac{f_{cm,sus,t}}{f_{cm,t_o}} = 0.96 - 0.12 * \sqrt[4]{ln\{72 * (t - t_0)\}}$$

$$\Rightarrow \text{ t em dias}$$

Redução das Resistências (efeito Rüsch) fib Model Code 2010

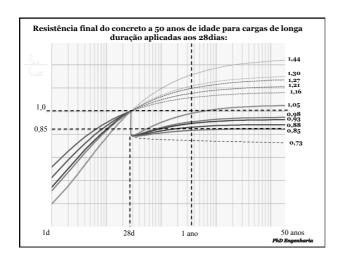

*Cálculo para 50 anos (admitido 18200 dias) - Carga aos 28 dias

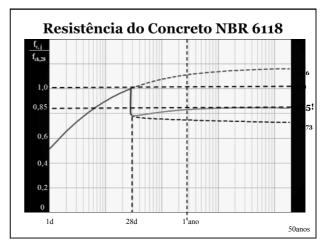

$$\frac{f_{cm,sus,t}}{f_{cm,t_o}} = 0,96 - 0,12 * \sqrt[4]{ln\{72*(t-t_0)\}}$$

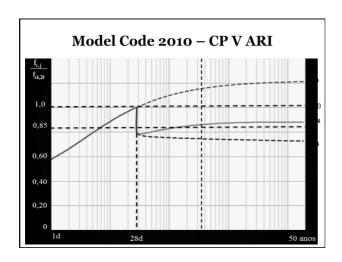

$$\frac{f_{cm,sus,18200}}{f_{cm,28}} = 0,96 - 0,12 * \sqrt[4]{ln\{72*(50*364-28)\}}$$

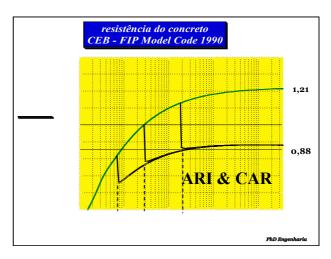
$$\frac{f_{cm,sus,18200}}{f_{cm,28}} = 0,728$$

$$\frac{f_{cm,sus,18200}}{f_{cm,28}} = 0,73$$
PAD Engenharia





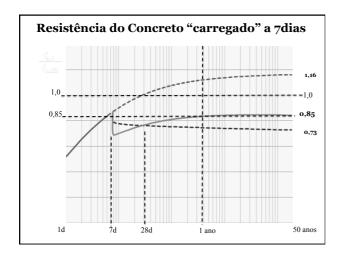

33333333333

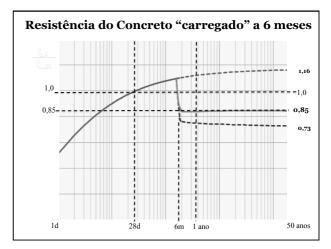

resistência do concreto com o tempo ?

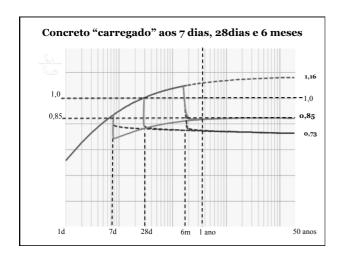
R	esistênc	eia		
	final do concreto licadas aos 28dias		e idade para ca	rgas de longa resulta
Rüsch		1,30	0,75	0,98
	CP III & IV	1,44	0,73	1,05
CEB (2010)	CP I & II	1,27	0,73	0,93
	CP V & CAR	1,21	0,73	0,88
NBR 6118:201	4	1,16	0,73	0,85
				PhD Engenhari

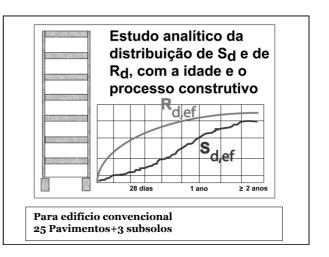
Quando efetivamente os elementos estruturais são carregados?

➤ lajes e vigas → 7 dias?

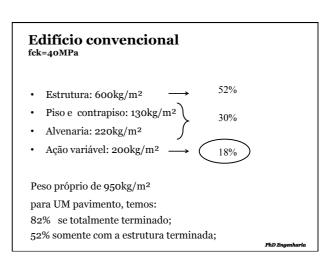

> pilares e fundações → 6 meses?




Qual o melhor período para carregamento da estrutura para f_{ck} a 28 dias?


Concreto Norma, s=0,16 e $B_{cc,50anos} = 1,16$

7 d	28d	63d	6meses
0,79	0,92	0,97	0,86
0,74	0,86	0,91	0,86
0,72	0,84	0,88	0,86
0,69	0,80	0,84	0,86
0,69	0,79	0,83	0,86
0,78	0,80	0,82	0,84
0,81	0,82	0,82	0,84
0,82	0,83	0,83	0,84
0,83	0,83	0,84	0,84
0,85	0,85	0,85	0,85
	0,79 0,74 0,72 0,69 0,69 0,78 0,81 0,82 0,83	0,79	0,79 0,92 0,97 0,74 0,86 0,91 0,72 0,84 0,88 0,69 0,80 0,84 0,69 0,79 0,83 0,78 0,80 0,82 0,81 0,82 0,82 0,82 0,83 0,83 0,83 0,83 0,84



Edificio convencional, 25 pavimentos fek=40 MPa

Para pilares no 5º pavimento (receberá 20 pavimentos acima):

Após 63 dias...8 semanas e 8 pavimentos concretados acima

- Edifício no 13º pavimento: 8/20 =40% do peso a ser suportado!
- Não foi iniciada alvenaria, logo: 0,52*0,40= 21% do projetado

CONSIDERAR EFEITO RUSCH?

PhD Engenharia

Edificio convencional

f_{ck}=40MPa

1ª caso: Extração aos 63 dias -> $f_{c,63}$ 43,0MPa

Conversão para 28 dias ("s"=0,16 NBR 6118:2014)
 f_{cm,28} * 1,053 * 0,759 = 43,0
 -> f_{cm,28} = 53,8MPa

2ª caso: Extração a um ano: 365 dias -> $\rm f_{c,365}$ 43,0MPa

• Conversão para 28 dias ("s"=0,16 NBR 6118:2014) $f_{cm,28}*1,118*0,746=43,0 -> f_{cm,28}=51,6MPa$

CONSIDERAR EFEITO RUSCH?

--- - - -

Retrofit > 50anos

 3^a caso: Extração a <u>50 anos</u> -> $f_{c,18250=}$ 21,0MPa Conversão para resistência 28 dias ("s"=0,16 NBR 6118:2014)

$$f_{cm,28} * 1,16 * 0,73 = 21,0$$
 -> $f_{cm,28} = 24,8MPa$

PhD Engenhari

Retrofit

 3^a caso: Extração a <u>50 anos</u> -> $f_{c,18250}$ = 21,0MPa Conversão para resistência 28 dias ("s"=0,16 NBR 6118:2014)

$$f_{cm,28} * 1,16 * 0,73 = 21,0$$
 -> $f_{cm,28} = 24,8MPa$

$$\sigma_{cd} = f_{cd} * o.85 / \gamma_c$$

PhD Engenharia

Retrofit

 3^a caso: Extração a <u>50 anos</u> -> $f_{c,18250=}$ 21,0MPa Conversão para resistência 28 dias ("s"=0,16 NBR 6118:2014)

$$f_{ck,28}^* \underbrace{1,16^* 0,73}_{0,85!} = 21,0$$
 -> $f_{ck,28} = 24,8$ MPa
$$\sigma_{cd} = f_{cd}^* 0,85 / \gamma_c$$

$$\sigma_{cd} = 21,0 / \gamma_c$$

$$\sigma_{cd} = 21,0 / 1,26 = 16,6$$
MPa

PhD Engenharia

Dúvidas

Uma vez que $\beta_{cc}^* \beta_{c,sus}$ é variável e depende da idade de carga e do concreto, faz sentido usar o coeficiente fixo

$$\beta_{cc} * \beta_{csus} = 0.85$$
?

$$\sigma_{cd} = \frac{f_{ck}}{\gamma_c} * 0.85$$

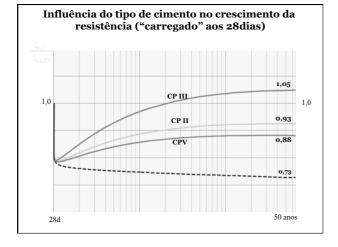
PhD Engenharia

Proposta

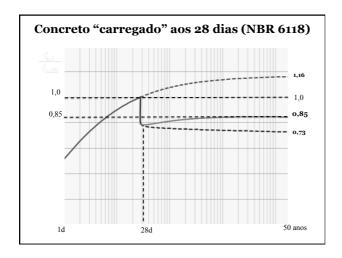
$$\sigma_{cd} = \frac{f_{ck}}{\gamma_c} * \beta_{cc,t} * \beta_{c,sus,t}$$

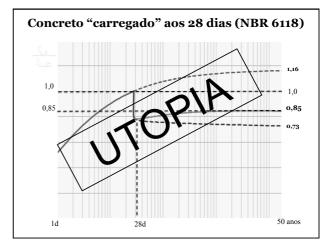
- $B_{cc,t}$ \longrightarrow tipo de cimento e relação a/c
- lacksquare $B_{c.sus.t}$ \longrightarrow idade de aplicação da carga

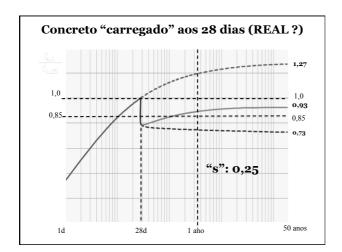
PhD Engenharia

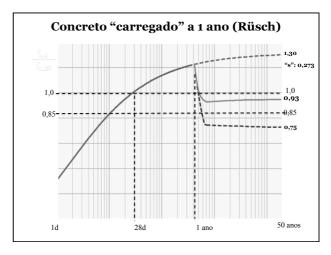

Dúvidas

- deveria diferenciar lajes (e vigas?) de pilares e existir pelo menos dois 0,85?
- testemunhos extraídos a elevadas idades (mais de 6h, 6 meses, 10anos) já incluem relaxação? No redimensionamento poderia dispensar o tal 0,85?

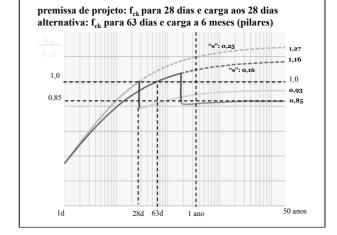

PhD Engenha

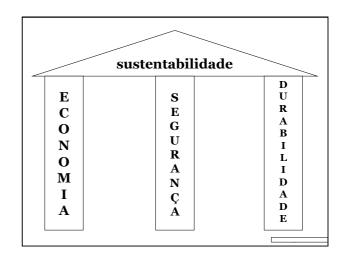

Proposta


■ para edifícios acima de 10 pisos, com taxa de elevação de 1 piso/semana, há vantagem em controlar f_{ck} a 63 dias, sem nenhum prejuízo à segurança, (*CP I, CPII, CP III, CP IV*)



Carregamento	Idade	β mínimo	Concreto
7dias	7d + 13h	0,660	ARI & CAR
7dias	7d + 11h	0,630	CP I & CP II
7dias	7d + 8h	0,557	CP III & CP IV
28dias	28d + 3d + 12h	0,785	ARI & CAR
28dias	28d + 2d + 20h	0,787	CP I & CP II
28dias	28d + 1d + 21h	0,791	CP III & CP IV
6meses	6m + 1h	0,847	ARI & CAR
6meses	6m + 1h	0,873	CP I & CP II
6meses	6m + 1h	0,945	CP III & CP IV
			PhD Engenharia





Por razões óbvias de sustentabilidade é conveniente adotar f_{ck} a 63 dias e não a 28 dias. Considerando o caso de um edifício de 25 andares há alteração da segurança?

Δt após carga	f _{ck28} , carga 28d ("s": 0,25)	f _{ck63} , carga 1806 ("s": 0,16)
20 min	0,92	0,98
0,5 h	0,86	0,92
1 h	0,84	0,89
10h	0,80	0,85
1dia	0,79	0,84
1 mês	0,80	0,82
3 meses	0,82	0,82
6 meses	0,83	0,82
1 ano	0,83	0,83
50 anos	0,85	0,85

Bibliografia Efeito Rüsch

 $ABNT\,NBR\,\,6118:2014$ – Projeto de estruturas de concreto – Procedimento. (consulta free na biblioteca da PhD)

 $ABNT\,NBR\,\,8681:2003\,Vers\~{a}o\,Corrigida:2004-Aç\~{o}es\,e\,segurança\,nas\,estruturas-Procedimento.\,(consulta\,free\,na\,biblioteca\,da\,PhD)$

ACI-318-11 – Building Code Requirements for Structural Concrete. (consulta free na biblioteca da PhD)

fib Model Code for Concrete Structures 2010. (consulta free na biblioteca da PhD)

PhD Engenharia

Bibliografia

 ${\rm ISO~22111:2007.}\,$ Basis for Design of Structures. General Requirements.

HELENE, Paulo. Resistência do Concreto sob Carga Mantida e a Idade de estimativa da Resistência Característica In: III Simpósio EPUSP sobre Estruturas de Concreto, 1993, São Paulo. III Simpósio EPUSP sobre Estruturas de Concreto. , 1993. p.271 – 282. (consulta free na biblioteca da PhD)

RÜSCH, Hubert. **Researches Toward a General Flexural Theory for Structural Concrete**. ACI Journal: Proceedings. [s.l.] Julho, 1960. 28p. (consulta free na biblioteca da PhD)

PhD Engenharia

OBRIGADO!

www.concretophd.com.br www.phd.eng.br

> 11-2501-4822 / 23 11-7881-4014