C40 Cities Climate Leadership Group

Mobilidade Sustentável

Programa de testes com ônibus limpos

Cidades liderado a Agenda

PROGRAMA DE TESTES COM ONIBUS ELÉTRICOS E HIBRÍDOS NA AMÉRICA LATINA

Bogota, Rio de Janeiro, Santiago e Sao Paulo

In partnership with:

Agradecimentos:

- BID (Banco Interamericano)
- ISSRC e Qualipetro
- SPTRANS
- SMT e SVMA
- Operadores:Transpass e Ambiental
- Volvo
- Eletra
- Daimler
- BYD (Build Your Dream)
- Elektro (Iluminatti, Manvel e Sigma)

PROGRAMA DE TESTES:

- · Emissão de poluentes locais (HC, CO, NOx, PM);
- Teste piloto com diesel de cana.
- Eficiência Energética das diferentes tecnologias (motores combustão e elétricos – bateria e trólebus).
- Viabilidade econômica das tecnologias e ciclo de vida total em cada cidade.

Tecnologias testadas? Total de 16 ônibus (diesel, híbridos, trólebus e elétrico a bateria).

Como são feitos os testes?

Exemplo de medição das emissões segundo a segundo em ônibus rodando por linha comercial com carga máxima.

Sao Paulo com emissões padronizadas. Comparação Híbridos x Diesel

Eficiência energética em São Paulo

1° Campanha com híbrido paralelo (alguns testes com diesel cana).

HB1-sc: 100%
DIESEL CANA

Eficiência energética em São Paulo

2° Campanha com híbrido serie e trólebus.

São Paulo: Eficiência energética padronizada pela capacidade de passageiros máxima.

Diesel 13,2m: 76 passageiros - Diesel 18m: 109 passageiros

Hibrido1: 84 passageiros - Hibrido2:69 passageiros - Trolebus: 81 passageiros

Consumo de combustível padronizado dos Híbridos e Trólebus em relação ao ônibus diesel base

Eficiência do Ônibus Hibrido e Trólebus Medida km/litro ou kwh

Eficiência do Ônibus Hibrido e Elétrico

Litro ou kwh/ km

Maior eficiência nos Ônibus Hibridos e Elétricos Litro ou kilowatts/ kilometro

Comparação das emissões em relação ao VSP (Vehycle Specific Power)

- Com ciclos de operação repetitivos, sendo que 96% da operação em São Paulo ocorre entre Bins 10 to 14. Representando um VSP de -7 to 13.6 kw/ton (massa veiculo).
- Para as emissões de poluentes, distribuição dos resultados também são bastante parecida (98% dos resultados de emissões estão entre os Bin 10 e Bin 14).
- **Diesel e Híbridos seguem mesma relação** Baixa emissão nos bins que demandam pouca energia (9, 10 and 11) e alta emissão nos bins mais altos.
- Híbridos em serie emitem mais em baixos usos energéticos, mas tem melhor desempenho quando o consumo energético do motor e' grande.
- Como a operação em São Paulo apresenta velocidades mais baixas em função do transito intenso (baixos VSP) híbridos tem desempenho muito bom em função dos freios regenerativos e previsibilidade dos trajetos
 - (Obs.: desempenho ainda melhor nos elétricos, em especial movidos `a baterias).

Comparação do consumo em relação ao VSP (Vehycle Specific Power)

Comparação das emissões em relação ao VSP (Vehycle Specific Power)

Conclusão geral sobre consumo energético

Híbridos: Redução media de 31%

Conclusões iniciais

- Significativa redução na emissões de poluentes dos híbridos.
- Zero emissões de poluentes locais nos ônibus elétricos.
- Aumento de velocidade gera redução no consumo e nas emissões.
- Variação de consumo em função de motoristas (20%).
- Grande economia de combustível/energia com eletricidade.
 - Híbridos entre 31% a 39% em planície.
 - Trólebus geram redução de 56% no consumo energético.
 - Ônibus elétricos teve redução média de 77% no consumo.
 Ônibus elétricos com baterias de fosfato de ferro são tecnologia com melhor desempenho de todas (81% redução consumo).

Nov/Dez 2012: Visita tecnica

- Cidade do México;
- Gotemburgo;
- Estocolmo;
- Londres
- Xangai;
- Shenzhen,
- Changsa;
- Hong Kong

HYBRID ELECTRIC BUS TEST PROGRAM IN LATIN AMERICA: Economic Analysis of the Program

Prepared by:

Dalberg

Global Development Advisors

Lower energy and maintenance costs reduce lifecycle costs for hybrid and electric buses compared to diesel buses

Bogotá

Lifecycle Costs ('000 USD, 10-Year Net Present Value)

Notes: Bus costs/initial taxes are as follows: Diesel (\$180K/\$29K), Hybrid (\$290K/\$5K), Electric (\$450K/\$23K). Battery total value for hybrids are \$100K. Battery total value for electrics is \$203K. Salvage value represents % of total value discounted to year zero. Capital investment includes deduction for salvage value; Taxes include initial taxes and annual taxes related to bus ownership

Electrics achieve savings of ~20% compared to diesel assuming partially local production and

Rio de Janeiro

Lifecycle Costs ('000 BRL, 10-Year Net Present Value)

Assumes electric buses are partially produced/assembled locally, bypassing most import taxes. 10-year diesel costs includes purchase/resale of new bus after 5 years of operation. Capital investment includes deduction for salvage value; Taxes include annual taxes related to bus ownership. Bus costs/initial taxes are as follows: Diesel (BRL 329K/ BRL 140K), Hybrid (BRL 493K/BRL 151K), Electric (BRL 735K/BRL 175K). Battery total value for hybrids are BRL 163K; For electrics value is BRL 340K. Salvage value represents % of total value discounted to year zero.

Lifecycle costs of hybrid and electric buses are lower than costs for diesel buses due to preferential financing options

Sao Paulo

Lifecycle Costs ('000 BRL, 10-Year Net Present Value)

Assumes electric buses are partially produced/assembled locally, bypassing most import taxes. 10-year diesel costs includes purchase/resale of new bus after 5 years of operation. Capital investment includes deduction for salvage value; Taxes include annual taxes related to bus ownership.

Bus costs/initial taxes are as follows: Diesel (BRL 296K/ BRL 123K), Hybrid (BRL 493K/BRL 146K), Electric (BRL 735K/BRL 175K). Battery total value f or hybrids are BRL 163K; For electrics value is BRL 340K. Salvage value represents % of total value discounted to year zero.

<u>São Paulo uptake</u>: Policy and favorable financing can drive uptake and conversion to hybrid and electric buses

São Paulo

Primary Drivers of Uptake in São Paulo

Policy

- Enforcement of existing Climate Change Law
 - Law requires bus operators to switch away from fossilbased fuels entirely by 2018; Legislation favors electric, biodiesel, ethanol, and sugarcane diesel technologies
- Adding technology or fuel performance standards in new BRT concession awards and existing concession renewals
 - Standards can be included in 4 new BRT routes and in the renewal of other existing contracts to require transition to hybrid or electric technologies

Economic/Market

- Low-interest financing for hybrid & electric technologies
 - BNDES may reverse financing incentives that currently favor diesel buses over hybrid and electric buses
- Reduce/eliminate unfavorable taxes and subsidies
 - Current high tax rates (import and other taxes) add ~35% to the cost of new electric buses imported
 - Petrobras subsidizes the cost of diesel fuel for operators, while electricity is taxed heavily

Other

- Demonstrated evidence of the advantages and operational east of hybrids in other Brazilian cities
 - Small hybrid fleet has begun service in Curitiba, and has the potential to provide tangible favorable evidence to reduce transition risk for other operators in Brazil

High Uptake Scenario

Assumptions:

- Climate Law introduces exemption for diesel hybrids
- Large operators become comfortable with operation and maintenance of hybrid technologies in Curitiba
- New/renewed contracts include strict requirements to transition to cleaner fuels more quickly
- BNDES establishes concessional finance lines for hybrid and electric buses significantly below rates for diesel

Potential uptake:

- ~2% of fleet transitions to hybrid or electric each year 2013-2015, rising to 5% in 2016 and 10% in 2019
- 12% of fleet (~1,200 buses) is H/E by 2016; ~70% by 2023 (~7,400 buses)

Low Uptake Scenario

Assumptions:

- Ethanol and/or sugarcane diesel prices decline steadily
- BNDES unable to provide additional financing incentives for hybrid or electric buses
- No tax relief provided for imported electric buses

Potential uptake:

- Minimal uptake by 2016 (approximately 300 buses)
- Gradual increase in uptake as cost and performance improve; ~13% of fleet transitions by 2020 (~1,330 buses); ~30 of fleet transitions by 2023 (~3,200)

São Paulo Roadmap

São Paulo

	Potential solutions	Estimated impact	Likely feasibility	Timeframe needed for implementation (years) 1 2 3 4 5	Stakeholder to influence
Econom-i c	A. BNDES preferential loans for H/E buses at lower interest than diesel				BNDES/Buyers
	B. Leasing electric battery systems	em 🕒			Manufacturers
	C. Fixed maintenance/fuel/ energy fee to reduce costs and technological uncertain	ty ①			Manufacturers
	D. Extend life contracts and eliminate 5 year average maximum on contracts				City officials
Policy	 E. Fuel efficiency standards for new concessions 1.Inter-municipal 4 new BRT 2.City new BRT (150kms) F. Preferential import tax rates for H/E G. Incentives locally produce H H. Reduce subsidies to diesel I. Reduce taxes to electricity 				State/City officials State officials City officials Min.Com./Fin./Ind Min.Com./Fin./Ind Ministry of Ind.
M i s c	J. Leasing bus entity to eliminate technological risk reselling			High Potential	Ministry of Ener. BNDES/BID/ Manufacturers

São Paulo uptake: Fleet conversion will be required to meet mandates of Climate Change Law by 2018

São Paulo

Potential Fleet Transition in São Paulo, 2013-2023 (Illustrative High Uptake Scenario)

Assumptions and Drivers of Change:

- Local production to avoid Import tax and/or reduction of taxes
- Climate Change Law provides exemption for hybrid (diesel) buses, catalyzing their growth
- Share of hybrid and electric buses in fleet reaches 55% by 2018; Remaining diesel buses shift to biodiesel blend & sugarcane to comply with Climate Law
- Share of hybrid and electric buses increases by 5% points in each year from 2014 to 2018, growth slowing starting in 2019

Muito obrigado.

Maiores informações

Adalberto Maluf amaluf@c40.org

Website: www.c40.org

Twitter: @C40cities

Facebook: C40 Cities

About C40 Cities Why Cities? Take Action Blog

C40 CITIES