

Instituto de Engenharia Divisão de Estruturas

Estruturas de Concreto

Tecnologia de materiais para Proteção e Impermeabilização

Conteúdo

Princípios de ciência do material

Solicitações em serviço

Patologia das estruturas de concreto

Análise do comportamento das estruturas e suas implicações para a manutenção

Conceitos gerais de recuperação estrutural

Tecnologia dos materiais de proteção e impermeabilização

Casos de obras

Responsabilidade

Desempenho

Durabilidade

Princípios de ciência do material

Natureza

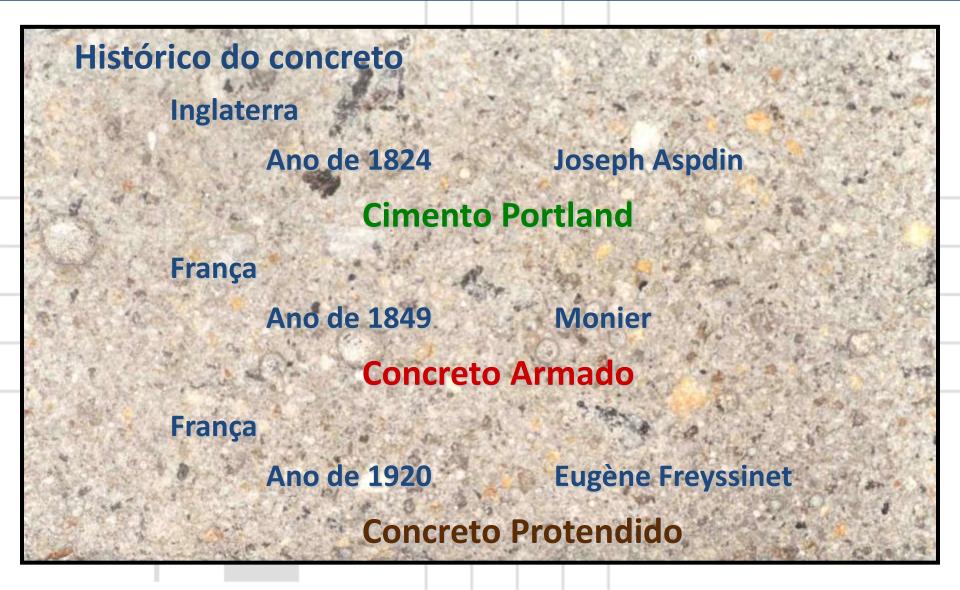
Composição química e arranjo microestrutural

Dinâmica de formação

Características

Matriz

Zona de transição


Agregado

Propriedades

Componentes

Aglomerante

Agregado Miúdo

Aditivos

Água

Agregado Graúdo

Redutores de água

Incorporadores de ar

Redutores de permeabilidade

Adições

Poliméricas

Minerais

ACI Committee 212
Report on Chemical
Admixtures for Concrete
ACI 212.3 R10

Propriedades

Estado Fresco

Trabalhabilidade

Estado Endurecido

Resistências Mecânicas

Compressão

Tração

Abrasão

Propriedades Físicas / Físico-químicas / Eletroquímicas

Consistência

Retração / Expansão

Resistividade elétrica

Resistência às Intempéries e aos Agentes Agressivos

Permeabilidade

Tipos

Massa

Estrutural

Armado

Protendido

Projetado

Reforçado com Fibras de Aço, Vidro,

Polipropileno

Pré-fabricado

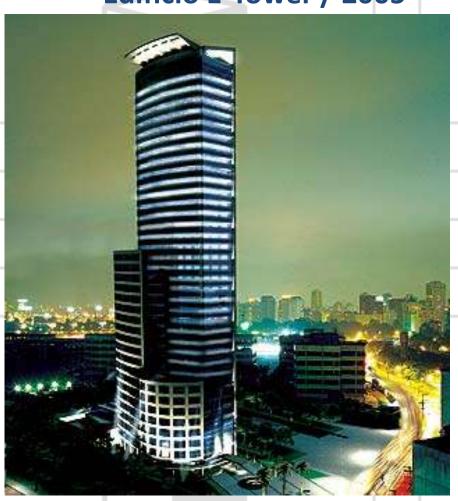
Compactado com Rolo (CCR)

Celular

Grautes e Microconcretos

Obras de Referência

Ponte de Herval - Emílio Henrique Baumgart / 1930



Obras de Referência

Edifício E-Tower / 2005

Consumo Mundial de Concreto

Consumo Mundial de Concreto

Ano de 1964

3 bilhões ton

Ano de 1994

5,5 bilhões ton

Ano de 2006

7 bilhões ton

Produção Mundial de Cimento Portland Ano de 2006 1,6 bilhão ton O cimento é o segundo recurso mais consumido pelo homem

O primeiro é a água

Brasil - 2006

Cimento Portland

42 mi ton

Concreto

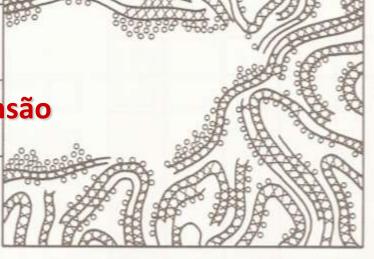
50 mi m³

Água

Água Capilar

> 50 nm → Livre

5 a 50 nm → Causa pequena tensão


Água Adsorvida

1,5 nm

Água interlamelar

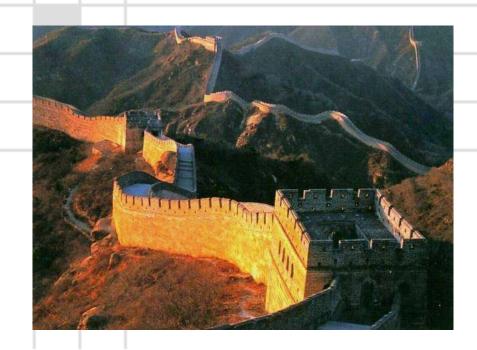
Água interlamelar — 880 6

Água fisicamente adsorvida

Camada monomolecular entre camadas de CSH

Água quimicamente combinada

Compõe a estrutura dos produtos hidratados do cimento



Durabilidade

Reduzir de modo significativo o fluxo de água Impermeabilizar

Proteger

Ag	lomera	nte

Cimento Portland

Tipos

CPI-S CP I **NBR 5732**

CP II-E CP II-F CP II-Z **NBR 11578**

NBR 5735 CP III

NBR 5736 CP IV

CP V-ARI NBR 5733

NBR 12989 CPB Estrutural e Não-estrutural

32

Classes

25

RS - Resistente a Sulfatos

BC - Baixo Calor de Hidratação

Norma Brasileira

NBR 5737

40

Aglomerante

Cimento Portland - Composição Química

Compostos Principais

Fórmula simplificada	Abr.	Denominação	%	
3CaO.SiO ₂	C ₃ S	Silicato Tricálcico	55-60	
2CaO.SiO ₂	C ₂ S	Silicato Dicálcico (β C ₂ S)	15-10	
3CaO.Al ₂ O ₃	C ₃ A	Aluminato Tricálcico	10-12	
4CaO.Al ₂ O ₃ .Fe ₂ O ₃	C ₄ AF	Ferroaluminato Tetracálcico	8 - 7	

Outros Compostos

4CaO.3Al ₂ O ₃ .SO ₃	C ₄ A ₃ S _ Sulfo-aluminato Tetracálcico	
3CaO.2SiO ₂ .3H ₂ O	C ₃ S ₂ H ₃	<12
C250 2H 0	CCH	

Aglomerante

Cimento Portland - Avaliação Química

	Fórm.	Identificação do cimento (% em massa)						
Análise Química	Quím	CI 1	CI 2	CI 3	CI 4	CI 5	Limites NBR 11578 (ABNT) 1991	
Perda ao Fogo (PF)		5,38	5,44	6,19	5,31	6,19	≤ 6,5	
Dióxido de Silício	SiO ₂	18,93	17,25	18,00	18,43	17,03		
Óxido de Alumínio	Al ₂ O ₃	4,25	4,27	4,29	4,23	4,07		
Óxido de Ferro	Fe ₂ O ₃	2,81	3,81	2,13	2,39	2,95		
Óxido de Cálcio	CaO	63,18	57,68	60,18	60,63	61,35		
Óxido de Magnésio	MgO	1,20	6,11	4,31	4,46	4,15	≤ 6,5	
Trióxido de Enxofre	SO ₃	2,31	2,54	2,95	2,94	2,76	≤ 4,0	
Óxido de Cal Livre	CaO	2,73	1,94	1,84	2,00	2,23		
Dióxido de Carbono	CO ₂	4,23	4,08	4,23	3,98	5,40		
Resíduo Insolúvel (RI)		0,91	0,89	0,36	1,51	0,70	≤ 2,5	

Aglomerante

Cimento Portland - Cálculo de Bogue da Composição Potencial

Composto	Símbolo	Cálculo de Bogue (%)					
Composto	Sillibolo	CI 1	CI 2	CI 3	CI 4	CI 5	
Silicato tricálcico	C ₃ S	41,2	33,3	38,6	37,8	43,9	
β-silicato dicálcico	C ₂ S	23,2	24,3	22,5	24,3	15,7	
Aluminato tricálcico	C ₃ A	6,5	4,9	7,8	7,2	5,8	
Ferroaluminato tetracálcico	C ₄ AF	8,6	11,6	6,5	7,3	9,0	
Sulfato de cálcio ou Gipsita	c s	3,9	4,3	5,0	5,0	4,7	
Óxido de cal livre	CaO _{livre}	2,7	1,9	1,8	2,0	2,2	
Óxido de magnésio	MgO	1,2	6,1	4,3	4,5	4,2	
Fíler calcário		11,3	10,9	11,3	10,6	14,4	
TOTAL		98,6	97,3	97,8	98,7	99,9	

S

Características do Cimento Portland

Composição Química

Reatividade dos Compostos

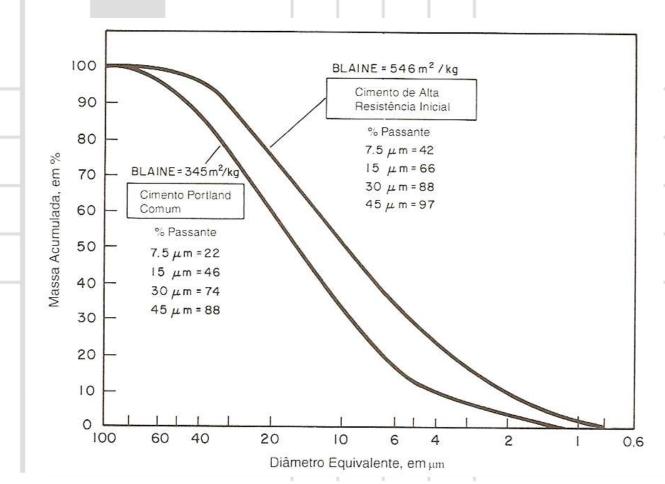
Estruturas cristalinas

Impurezas: Mg Na K

Finura

Malha # 200 - 75 μm

Malha # 375 - 5 μm


Área Específica

Aglomerante

Características do Cimento Portland

Aglomerante

Hidratação do Cimento Portland

Importância

"A química do concreto é essencialmente a química da reação entre o cimento Portland e a água... Em qualquer reação química os principais pontos de interesse são as transformações da matéria, as variações de energia e a velocidade da reação..."

Brunauer e Copeland

Aglomerante

Hidratação do Cimento Portland

Mecanismos

Dissolução-precipitação

Topoquímico ou hidratação no estado sólido

Produtos da Hidratação

Família de C-S-H estruturalmente similares

C-S-H

Resistência Mecânica Relação cálcio/sílica

Teor de água quimicamente combinada

MAXIMUM △ 42.94 MINIMUM ★ -102.5 30.0 - 10.0 - 10.0 - 30.0 - 50.0 - 70.0 - 90.0

Agregados

Características e Propriedades

Granulometria

Naturais

ou

Artificiais

Miúdo d < 4,8 mm

75 μm a 4,8 mm

Graúdo d > 4,8 mm

4,8 mm a 50 mm (150 mm)

Composição Mineralógica

Massa Específica

Massa Unitária

Agregados

Características e Propriedades

Origem

Areia

Pedregulho

Pedra Britada

Resistência Mecânica à Compressão

Basalto - 120 a 180 MPa

Granito - 110 a 190 MPa

Calcário - 4 MPa

Arenito - 230 MPa

Gnaisse - 90 a 140 MPa

Módulo de Elasticidade

Coeficiente de Poisson

Coeficiente de Dilatação Térmica Linear

 $\alpha = 4 \text{ a } 21 \text{ x } 10^{-6} / ^{\circ}\text{C}$

Aditivos

Definição

Teores

0,2 a 1,5%

Produtos químicos formulados para melhorar ou modificar as propriedades dos concretos

Aditivos

Espectroscopia por Infravermelho

Identificação

Transmitância (%) x Número de onda (cm⁻¹)

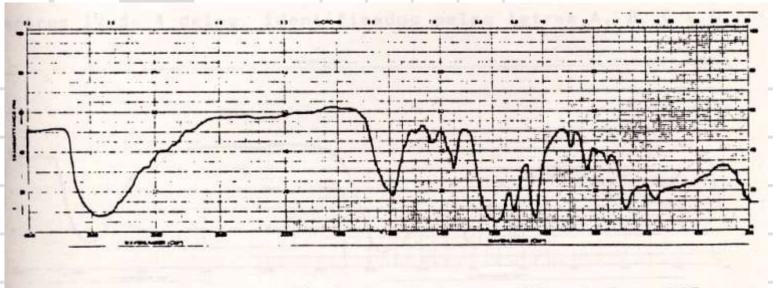
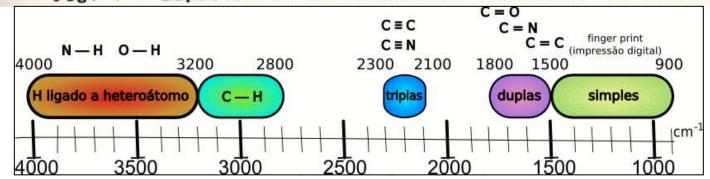



Fig. 7 - Espectro IV de "naftaleno sulfonato" ou SNF.

Adições

Definição

Teores

5 a 20%

As adições também têm como objetivo melhorar as propriedades e características dos concretos

Agem no estado fresco e/ou endurecido

Selecionados em função da aplicação

Podem substituir parte do aglomerante quando utilizadas em proporções convenientes

Três tipos principais

Adições inorgânicas ou minerais de baixa reatividade (inertes)

Adições inorgânicas ou minerais ativas

Adições orgânicas ou poliméricas

Economia

Adições

Adições minerais de baixa reatividade

Filler calcário

Adições inorgânicas ou minerais ativas

Sílica ativa - SiO₂ (> 95%)

Metacaulinita - SiO_2 ($\approx 50\%$) + Al_2O_3 ($\approx 40\%$)

Pozolanas de elevada reatividade

Adições orgânicas ou poliméricas

Látex polímero

Pós de polímero redispersível

Polímeros solúveis em água

Polímeros líquidos

Adições Poliméricas

- 1. Látex polímeros:
- 1.1. Látex elastoméricos;
- 1.1.1. Borracha natural (NR);
- 1.1.2. Borracha sintética:
- 1.1.2.1. Estireno-butadieno (SBR);
- 1.1.2.2. Cloropreno (CR);
- 1.1.2.3. Metil metacrilato-butadieno (MBR);
- 1.2. Látex termoplástico:
- 1.2.1. Poliacrílico éster (PAE);
- 1.2.2. Poli(acetato de vinila-etileno) (EVA);
- 1.2.3. Poli(éster de acrílico-estireno) (SAE);
- 1.2.4. Polivinila propianato (PVP);
- 1.2.5. Polipropileno (PP);
- 1.2.6. Polivinila acetato (PVAC);
- 1.3. Látex termoestáveis:
- 1.3.1. Resina epóxi (EP);
- 1.4. Látex betuminosos:
- 1.4.1. Asfalto;
- 1.4.2. Asfalto impregnado com borracha;
- 1.4.3. Parafina;
- 1.5. Látex misturados.

- 2. Pós de polímero redispersível:
 - 2.1. Poli(acetato de vinila-etileno) (EVA);
 - 2.2. Poli(versatato de vinila-acetato polivinila) (VAVeoVa);
 - 2.3. Poli(éster de acrílico-estireno) (SAE);
- 2.4. Poliacrílico éster (PAE);
- 3. Polímeros solúveis em água (Monômero):
- 3.1. Derivados de celulose:
- 3.1.1. Metil celulose (MC);
- 3.1.2. Hidróxi etil celulose (HEC);
- 3.2. Polivinila álcool (PVA, Poval);
- 3.3. Poliacrilamida;
- 3.4. Acrilato:
- 3.4.1. Acrilato de cálcio;
- 3.4.2. Acrilato de magnésio;
- 4. Polímeros líquidos:
- 4.1. Resina epóxi (EP);
- 4.2. Resina de poliéster insaturado (UP).

Dosagem e Controle Tecnológico

Proporção, em massa ou em volume

Traço

C: A: P1: P2: Água: Aditivo: Adição

Propriedades Físicas e Mecânicas

Relação água/cimento Mistura Cura

Consumo de cimento Lançamento

Composição química Adensamento

Estudo de Dosagem

Ari Torres (ABCP)

Helene & Terzian (Pini / Encol)

Vitervo O Reile

ACI

FIB/CEB

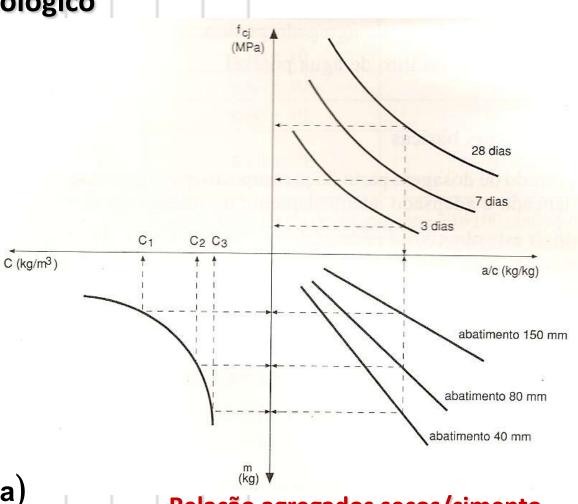
Dosagem e Controle Tecnológico

Conceitos Fundamentais

Lei de Abrams

$$\mathbf{f}_{cj} = \frac{\mathbf{k}_1}{\mathbf{k}_2^{a/c}}$$

Lei de Lyse


$$\mathbf{m} = \mathbf{k}_3 + \mathbf{k}_4 \cdot \mathbf{a}/\mathbf{c}$$

Lei de Molinari

$$C = \frac{1000}{k_5 + k_6 \cdot m}$$

Equações fundamentais

Teor de argamassa
$$\alpha = \frac{(1+a)}{(1+m)}$$

Relação agregados secos/cimento

$$m = a + p$$

Dosagem e Controle Tecnológico

Conceitos Fundamentais

Leis Complementares

Consumo de cimento

$$C = \frac{\gamma}{1 + a + p + a/c}$$

Custo

$$C = \frac{\left(1000 - ar\right)}{1/\gamma_c + a/\gamma_a + 1/\gamma_p + a/c}$$

 $Custo = C.R_c + C.a.R_a + C.p.R_p + ...$

Resistência Característica de Projeto

$$f_{cdj} = f_{ckj} + 1,65.s_d$$

Desvio-padrão de dosagem

$$s_d = 3 a 5,5 MPa$$

Aço

Controle tecnológico industrial

Tipos

CA-25

CA-50

CP-150 CP-160

Resistências mecânicas

Barras com mossas (CA)

CA-60

Cordoalhas (CP)

Aço

Propriedades Mecânicas

CA

Resistências à compressão e à tração

E = 210 GPa

Elasticidade - Deformação elástica

Módulo de Elasticidade (Young) - Rigidez

Ductilidade - Deformação plástica total

Alongamento ou estricção

Fluência

Deformação ao longo do tempo de serviço

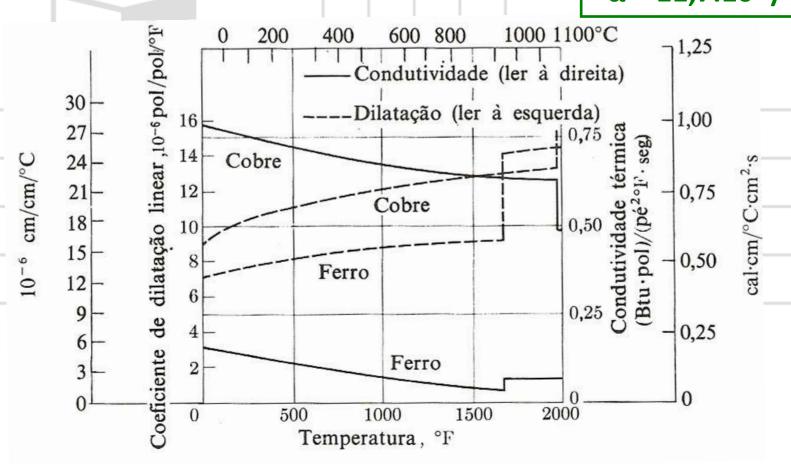
Dureza

Penetração de uma esfera ou cone

Brinell e Rocwell

Tenacidade

Energia = Força x Deslocamento


Aço

Propriedades Térmicas

 $\alpha = 11,7.10^{-6}/^{\circ}C$

Projeto Classificação da Agressividade do Meio Risco de Classe de **Agressividade** Tipo de ambiente deterioração agressividade Rural Fraca Insignificante Submerso Moderada Urbano Marinho Grande **Industrial** Industrial **Elevado** Respingos de maré NB₁ NBR6118/2003

Projeto

Correspondência entre a Classe de Agressividade do Meio e a Qualidade do Concreto

	e delication	Classe de agressividade					
Concreto	Tipo	Fraca	Moderada	Forte.	Muito forte		
Relação	Armado	≤ 0,65	≤ 0,60	≤ 0,55	≤ 0,45		
água/cimento	Protendido	≤ 0,60	≤ 0/55	≤ 0,50	≤ 0,45		
Classe	Armado	≥ C20	≥ C25	≥ C30	≥ C40		
NBR 8953	Protendido	> ≥ C25	≥ C30	≥ C35	≥ C40		

NB1

NBR6118/2003

51-BRASILIA - CATE DRAL NA SA APARECIDA E MINISTÉRIOS - COLOMBO

Concreto

Projeto

NB1 NBR6118/2003

Correspondência entre a Classe de Agressividade e o Cobrimento do Concreto

Tipo	Componente	Classe de agressividade					
		Fraca	Moderada	Forte	Muito forte		
		Cobrimento nominal - C _{nom}					
		(mm)					
Concreto	Lajes	20	25	35	45		
armado	Vigas e Pilares	25	30	40	50		
Concreto protendito	Todos	30	35	45	55		

Alguns Requisitos

Cobrimento nominal é o cobrimento mínimo da face externa do estribo acrescido da tolerância de execução, considerando $\Delta c \ge 10 \text{ mm}$

$$d_{max} \le 1,2.C_{nom}$$

$$C_{nom} \ge \phi_{barra}$$

$$C_{\text{nom}} \ge \phi_{\text{barra}}$$
 $C_{\text{nom}} \ge \phi_{\text{feixe}} = \phi_{\text{n}} = \phi. \forall n$ $C_{\text{nom}} \ge 0.5. \phi_{\text{bainha}}$

$$C_{nom} \ge 0.5.\phi_{bainha}$$

Patologia das Estruturas

Custos

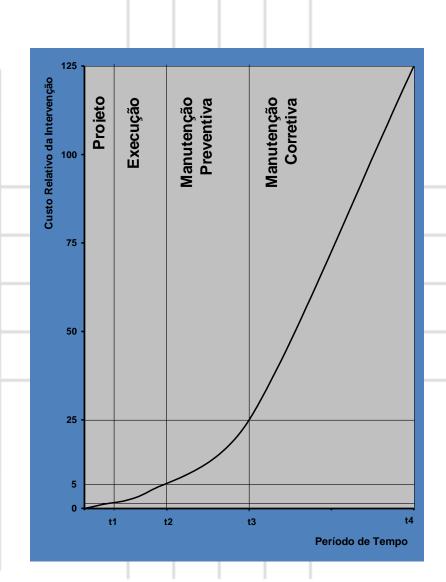
Baboian e Hoar

Perdas globais por corrosão - 3 a 4% PIB

1° - Transportes

2º - Instalações Portuárias e Marinhas

3° - Construção Civil (> 0,5%)



Custos

Lei de Sitter

 $PG \Rightarrow q = 5$

Sintoma

Manifestações Patológicas

Fissuras

Manchas superficiais

Corrosão das armaduras

Eflorescências

Degradação química

Flechas

Outras deformações excessivas

Falhas de concretagem

Interferências de outros projetos

Esborcinamentos

Desgastes superficiais

Outros

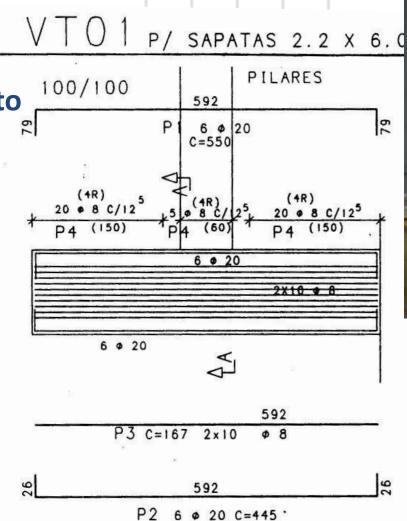
Mecanismos

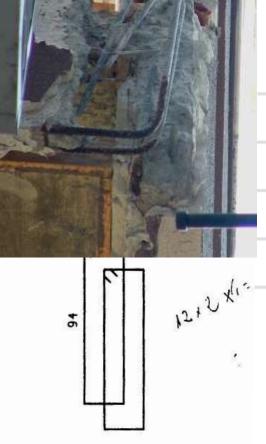
Processos

Físico
Químico
Físico-químico
Eletroquímico
Mecânico

Origem

Momento


Planejamento

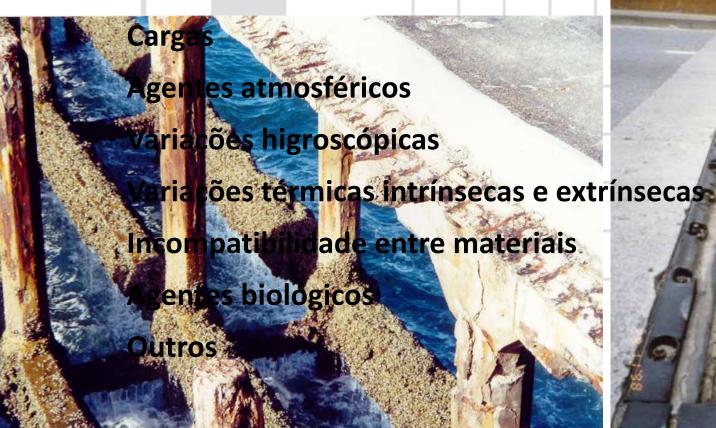

Projeto

Materiais

Execução

Uso

45 Ø 8 C=330


P4

Causa

Agente

Consequência

Redução da vida útil, com o comprometimento da segurança ou das condições de serviço e funcionamento ou das condições

estéticas

Ataque ao Concreto

Águas Agressivas

Sulfatos

Mg NH₄ Na Ca K

Água do mar

Águas subterrâneas

Águas residuais industriais

Água de chuva

Primeira: $NaSO_4 + Ca(OH)_2 + 2H_2O \Rightarrow CaSO_4.2H_2O + 2NaOH$

 $CaSO_4.2H_2O + C_3A \Rightarrow ETRINGITA$

Segunda: $C_3A \in C_4AF$ Hidratados \Rightarrow Sulfoaluminados e Sulfoferritos

Terceira: Decomposição do C-S-H com perda de resistência

Ataque ao Concreto

Águas Agressivas

Águas Puras (Soft Water)

Anidrido Carbônico - Ca(HCO₃)₂

Ácidos

Ácidos Minerais - Clorídrico, Sulfúrico, etc

Ácidos Orgânicos - Acético, Laico, Oleico, etc

Sais de Amônia

Temperatura Bactérias (S) Carbonatos

Óleos e Graxas Nitratos e Nitritos

Cloro Fluoretos, Silicatos e Cromatos

Ataque às Armaduras

Corrosão das Armaduras

Agentes Agressivos

O, CO, H,O SO₄ Cl

Mecanismos

Carbonatação

Cloretos

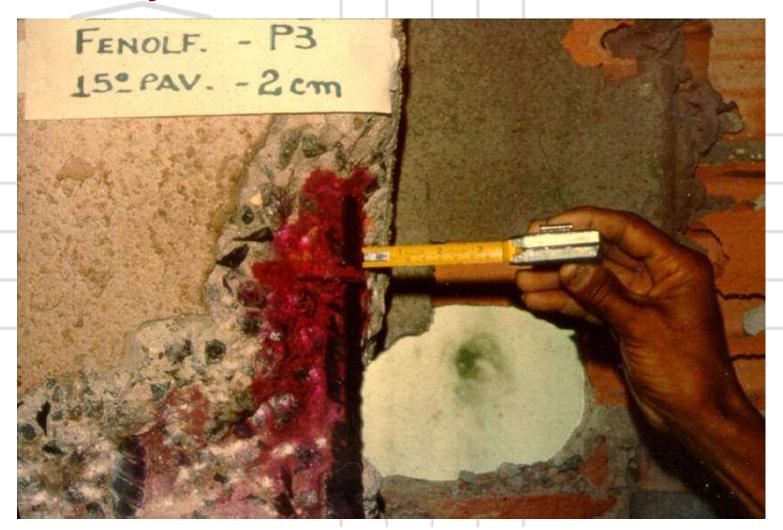
Proteção ao aço

Proteção física

Cobrimento nominal

Propriedades do concreto

Proteção química


Capa passivante

Meio alcalino do concreto

Carbonatação do Concreto

Carbonatação do Concreto

Penetração da frente de carbonatação em concretos de cimento Portland

	TEMPO (em anos)							
Cobrimento (mm) Relação a/c	05	10	15	20	25	30		
0,45	19	75	>100	>100	>100	>100		
0,50	6	25	56	. 99	>100	>100		
0,55	3	12	27	49	76	>100		
0,60	1,8	7	16	29	45	65		
0,65	1,5	6	13	23	36	52		
0,70	1,2	5	11	19	30	43		

Íons de Cloro (Cloretos)

Extração do concreto com o uso de furadeira e avaliação da quantidade de cloretos em relação à massa de cimento ou à massa de concreto

Limite máximo geral:

0,4% em relação à massa de cimento

0,05 a 0,1% em relação à massa de concreto

EH-88 - CA - Máximo de 0,4% em relação à massa de cimento

EH-80 - CP - Máximo de 0,1% em relação à massa de cimento

Norma Brasileira NBR 6118/2003

Vida útil

Período de tempo durante o qual se mantêm as características das estruturas de concreto, desde que atendidos os requisitos de uso e manutenção prescritos pelo projetista e pelo construtor, bem como de execução dos reparos necessários decorrentes de danos acidentais.

Projeto

Até a despassivação das armaduras, considerando o período de 50 anos para obras correntes e 100 anos para obras de maior importância social

Serviço

Até o surgimento de manchas e/ou fissuras e o destacamento do concreto de cobrimento

Última

Colapso parcial ou total

Inspeção Detalhada

Comportamento das estruturas em função das solicitações

Carregamentos

Corrosão das armaduras

Ataques químicos

Recalques

Histórico de utilização

Outras ações

Identificação

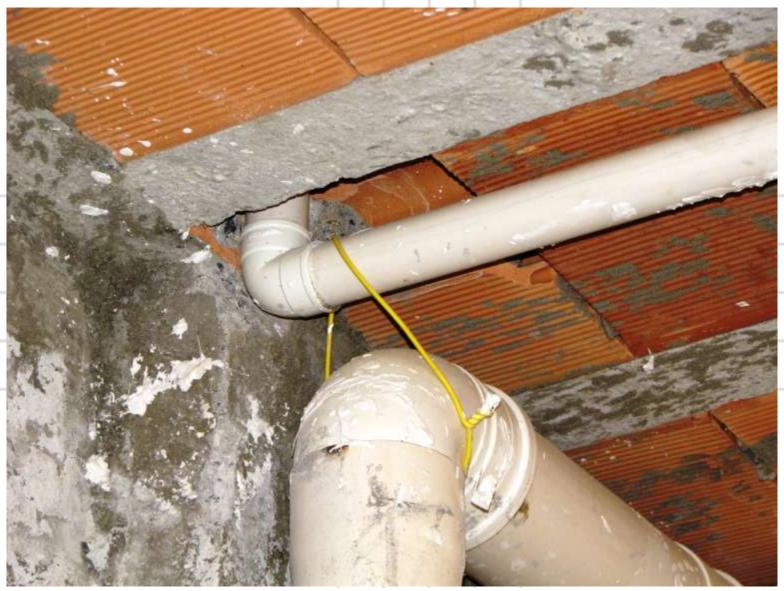
Fissurações

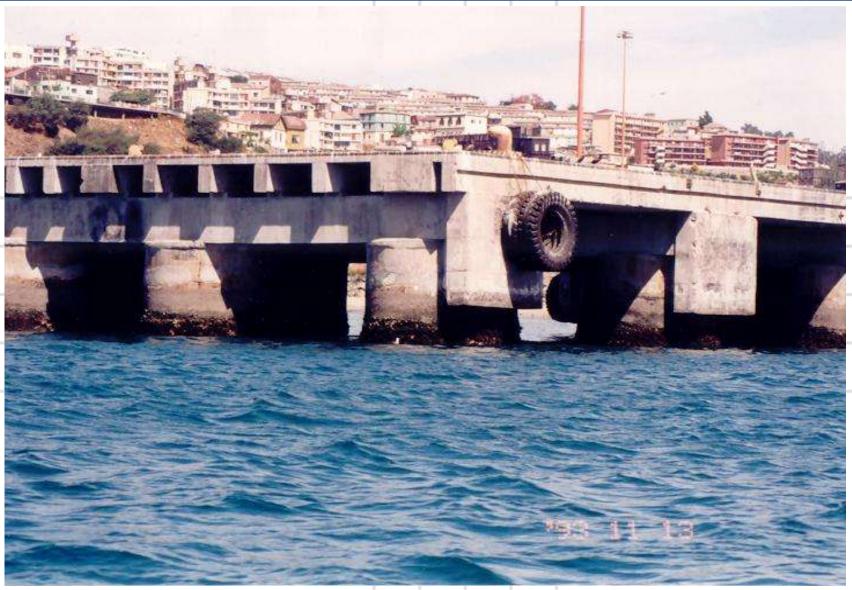
Deformações e deslocamentos

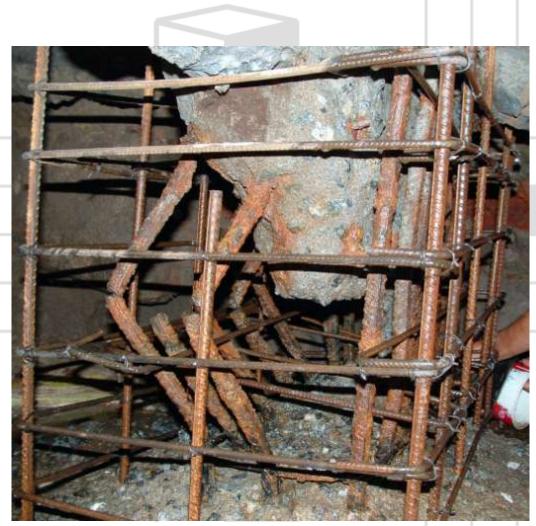
Desplacamentos

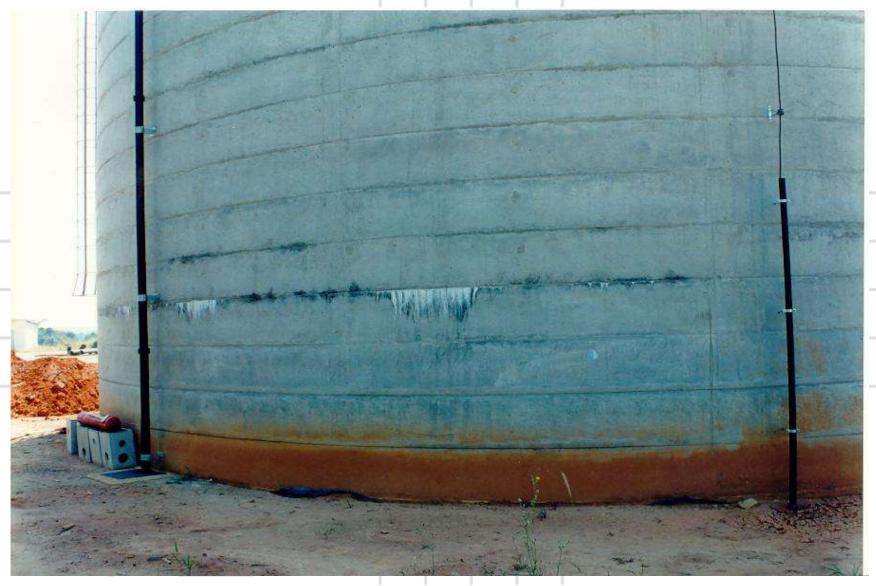
Indícios de reações químicas

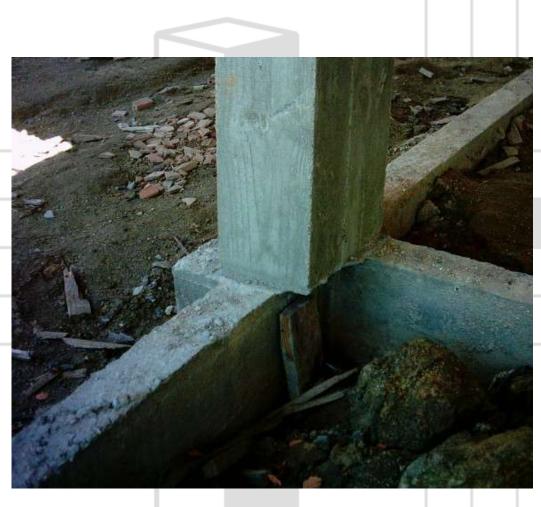
Indicações de perda de capacidade portante











Reparo

Recuperação superficial que visa restabelecer a integridade estrutural e a proteção às armaduras, bem como as condições de estética dos elementos e da obra como um todo

Reconstituição Intervenção que restabelece as condições estruturais de suporte de cargas, a proteção às armaduras e, por fim, de estéticas da estrutura

Reforço

Inserção de elementos que restabeleçam e/ou ampliem a capacidade portante da estrutura original

Reconstrução

Estado de ruína parcial ou total, em que nenhuma das anteriores possa ser aplicada e no qual é necessário modificar o arranjo geométrico da estrutura

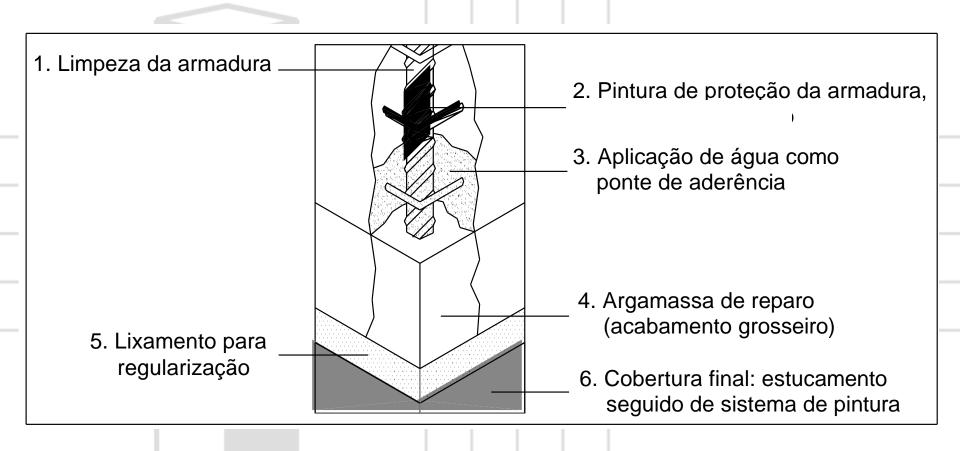
Etapas

Preparo do substrato

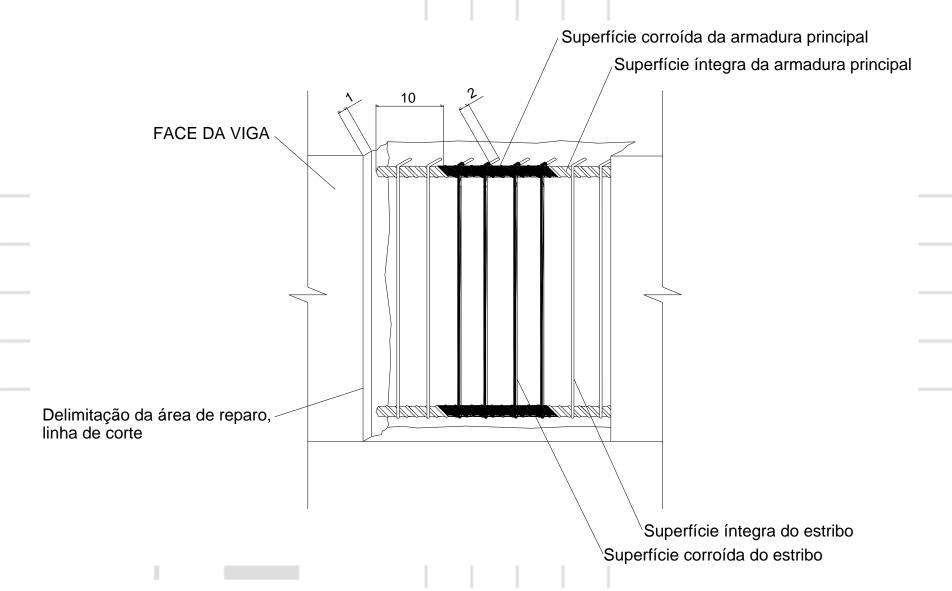
Tratamento das armaduras

Recomposição das seções dos elementos estruturais

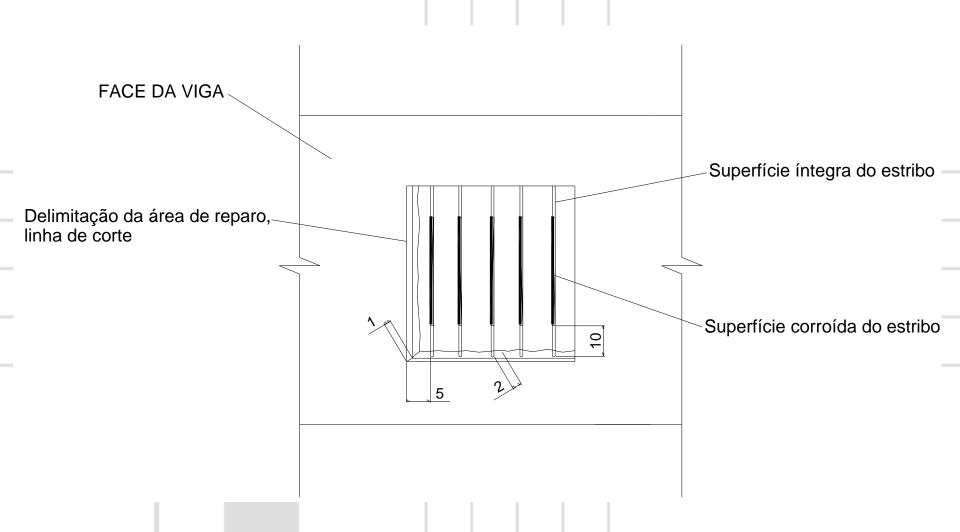
Cura do material de reparo

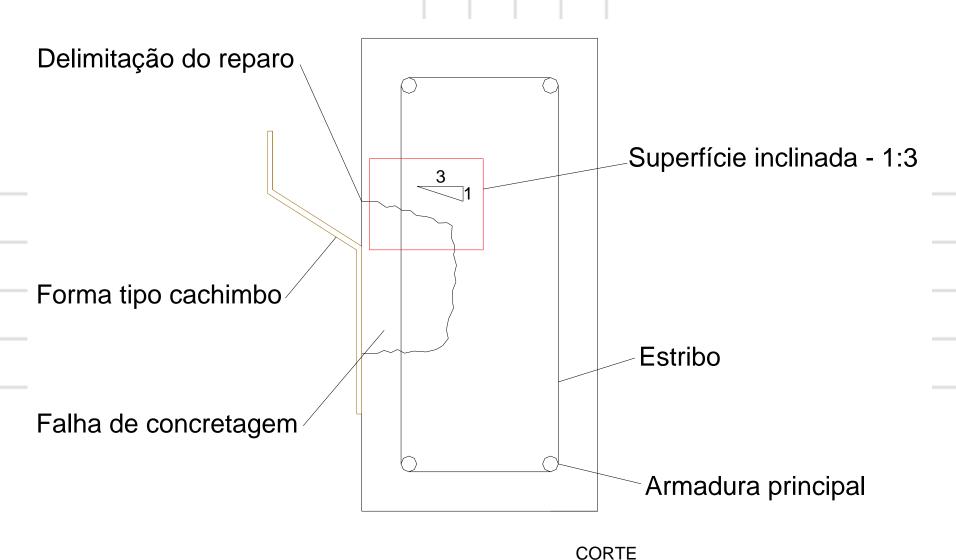

Estucamento

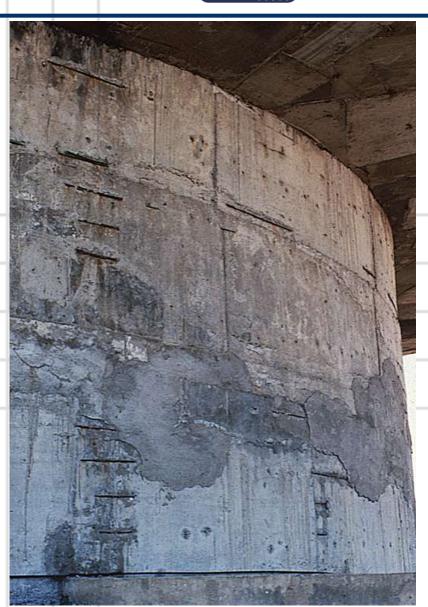
Pintura de proteção superficial



Etapas do processo de recuperação







Execução

Tomar cuidado com procedimentos que provocam a "maquiagem" do problema

Aumento dos custos das intervenções em curto a médio prazo

Observar a Lei de Sitter

Excelência Executiva

Uso de Aditivos e/ou Adições

Redutores de Água

Redutores de Permeabilidade

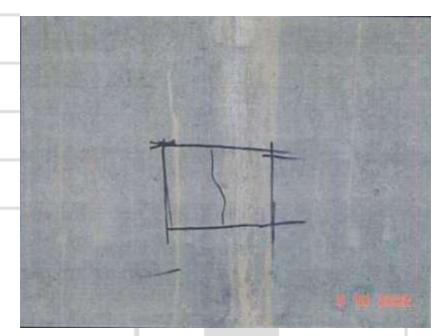
Densificadores

Procedimentos Executivos

Lançamento

Adensamento

Cura Rigorosa



Análise microscópica dos testemunhos de concreto do muro de contenção do terminal 3 do Changi Airport

Identificação das fissuras

Extração dos testemunhos

Análise microscópica dos testemunhos de concreto do muro de contenção do terminal 3 do Changi Airport

Cristais formados na fissura

Cristais de Penetron alongados e tipo agulha

Universidade Leibniz de Hannover na Alemanha

Análise microscópica do efeito autocicatrizante do aditivo de cristalização integral

Imagem inicial de fissura com 0,4 mm

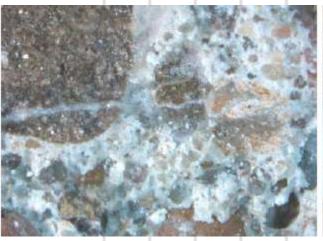


Imagem após 15 dias em contato com a umidade

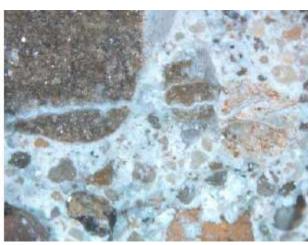


Imagem após 30 dias em contato com a umidade

Tecnologia de Materiais

Tipos

Hidro-repelentes ou Tratamentos Hidrofóbicos

Endurecedores de Superfície

Pinturas

Membranas

Membranas Pré-fabricadas

Membranas Especiais

Revestimentos

Baixa Espessura

Alta Espessura

Mantas

Tecnologia de Materiais

Bases Químicas

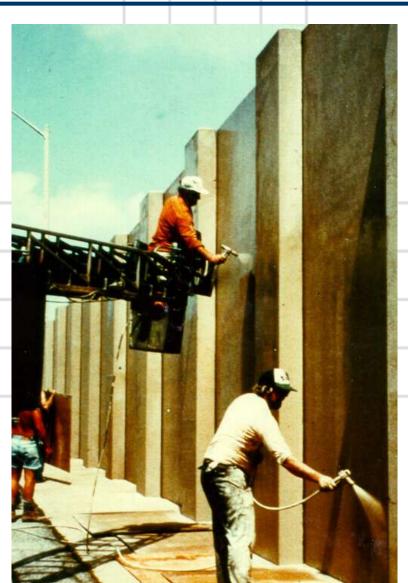
Silanos Silano-Siloxano

Silicatos Fluorsilicatos

Látex PVA Acrílicos

Epóxi Epóxi-Novolac

Poliuretanos PVC


Borracha Clorada Poliuréias

Cimentícia Cimento Modificado

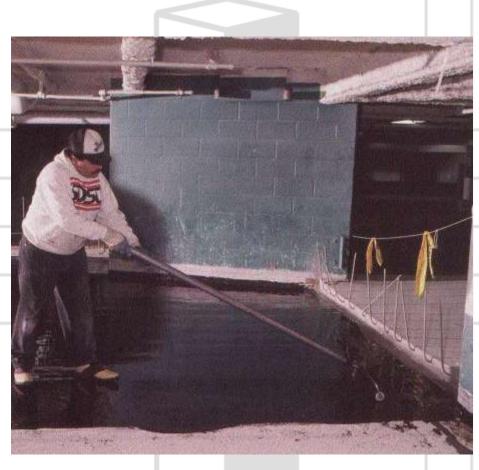
Hidro-repelentes

Endurecedores de Superfície

Pinturas

Pinturas

Pinturas e Revestimentos



Membranas

Revestimentos

Revestimentos

Membranas Especiais

Membranas Especiais

AGRADECIMENTOS

MUITO OBRIGADO